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data from the mitochondrial cytochrome oxidase I gene 
were combined with morphological criteria to confirm the 
identities of ten oyster species of Ostreidae, Isognomoni-
dae, and Pteriidae, focusing on the Pacific and Caribbean 
coasts of Panama, since tropical biota have received the 
least study. The results indicate that Crassostrea virginica, 
previously only reported from this region along the Yucatan 
Peninsula and coast of Venezuela, also occurs in the Carib-
bean waters of Panama. We also document the first record 
for a species of Saccostrea, a genus native to the Pacific, 
suggesting an invasion by an unknown non-native Saccos-
trea species that is now widespread along the Caribbean 
from the Panama Canal west to Bocas del Toro. Sequences 
of the internal transcribed spacer region (ITS1) of the ribo-
somal gene complex (rDNA) did not reveal any hybridi-
zation. Considering the high connectivity of shipping and 
boating in Panama, Saccostrea sp. may have been intro-
duced to the Caribbean by either recreational or commer-
cial vessels, but the timing and potential ecological effects 
of this invasion remain unknown.

Introduction

Oysters are ecosystem engineers, playing many vital roles 
in coastal ecological processes, including nutrient cycling 
and benthic-pelagic coupling (Newell 2004), helping 
decrease eutrophication (Kemp et  al. 2005), and creating 
habitat that serves as nurseries for commercially impor-
tant fish and crab species (Coen et al. 2007). Additionally, 
oysters serve as hosts for a variety of protistan parasites, 
some of which can cause massive host mortalities and alter 
community structure and ecosystem dynamics (Villalba 
et al. 2004; Burreson and Ford 2004; Carnegie and Cochen-
nec-Laureau 2004). Although oysters contribute greatly to 
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integral biotic processes in coastal waters, the geographic 
boundaries of many species are not well understood, and 
their taxonomy is often unclear. This is mainly due to their 
phenotypically plastic shells, which can be greatly influ-
enced by environmental factors (Tack et al. 1992; Wilk and 
Bieler 2009), making species difficult to identify and cir-
cumscribe based on external shell characteristics alone.

To add to the confusion, oyster species often have 
widespread and overlapping geographic ranges, reflecting 
both natural and anthropogenic mechanisms for disper-
sal. Many bivalve larvae have extended planktonic stages, 
enabling them to disperse to distant locations (Scheltema 
1986). Juvenile and adult oysters rafting on floating debris 
is another potential mechanism for the natural dispersal 
of some species, sometimes over vast distances (e.g., Ó 
Foighil et al. 1999; Donald et al. 2005). Bivalves can also 
be spread inadvertently via maritime traffic by attaching to 
the hulls of vessels (Gollasch 2002; Carlton 1992; David-
son et al. 2009), as larvae in ballast water (Gollasch et al. 
2002; Briski et  al. 2012), or associated with sea chests 
(Coutts et al. 2003; Coutts and Dodgshun 2007). Addition-
ally, many bivalve species have been moved deliberately 
for aquaculture purposes (McKindsey et  al. 2007) and 
through the aquarium trade (Padilla and Williams 2004; 
Weigle et  al. 2005). All of these mechanisms aid in dis-
persing bivalve species and modifying their distributions, 
which, when combined with the inherent difficulties of 
morphological identification, can contribute to confusion in 
understanding the geographic range of species or recogniz-
ing new invaders.

Increasingly, molecular markers are being used as an 
independent data source for species identification, to detect 
cryptic or unrecognized species, and to clarify persistent 
taxonomic and biogeographic uncertainty. Molecular mark-
ers have been successfully used to differentiate members 
within the genus Crassostrea (e.g., Lam and Morton 2003; 
Reece et al. 2008; Cordes et al. 2008; Sekino and Yamash-
ita 2013) and the genus Saccostrea (e.g., Lam and Morton 
2006; Sekino and Yamashita 2013), and between other 
closely related oyster genera (e.g., Klinbunga et  al. 2005; 
Liu et al. 2011), as well as aiding in resolving the distribu-
tions of other bivalve species. For example, sequence data 
confirmed the Trans-Atlantic geographic ranges of C. rhiz-
ophorae and C. gasar (Lapégue et al. 2002), as well as the 
identities and geographic ranges of multiple Crassostrea 
species along the Brazilian coast (de Melo et al. 2010). Fur-
thermore, molecular markers have been used to confirm the 
introduction of non-indigenous bivalves through anthropo-
genic activities, such as the previously unrecognized intro-
duction of the Pacific jingle shell, Anomia peruviana, to 
Caribbean waters (Schlöder et al. 2013) and detect poten-
tially non-native species of Crassostrea in Brazilian waters 
(de Melo et al. 2010; Galvão et al. 2013).

As the first step in a study to resolve the broad-scale bio-
geography of oysters and their associated parasites across 
North and Central America, we used a combination of mor-
phological criteria and sequences of the mitochondrial COI 
gene from multiple oyster species within the family Ostrei-
dae and several families within the Pterioidea, focusing on 
commonly occurring species from multiple locations along 
the Pacific and Caribbean coasts of Panama. Our goals 
were to confirm the identities of the bivalve species col-
lected and to determine their distributions within Panama-
nian waters.

Materials and methods

Specimen collection

We collected oysters from a variety of intertidal and subtidal 
habitats (primarily mangrove rhizophores, rocks, docks, pil-
ings, etc.) from multiple locations on the Pacific and Carib-
bean coasts near the Panama Canal and at Bocas del Toro 
(Fig. 1). Maps showing the distribution of three of the iden-
tified bivalves and all sampling locations were generated 
using ArcGIS 10.2.2 for Desktop (Esri, Redlands, Califor-
nia). At the time of collection, physical data associated with 
the water were also collected (Electronic Supplementary 
Material (ESM) Table S1). We placed oysters in coolers on 
ice and, upon returning to the laboratory, kept the oysters 
at ~4  °C for no more than 72  h. Prior to the tissue sam-
pling, we removed epibionts and mud from the shells, then 
measured and shucked the oysters. Oysters were tentatively 
identified in the field to the lowest possible taxonomic level 
(genus or species), using standard bibliographic references 
[e.g., Romashko (1992), Tucker Abbott and Morris (1995), 
Kaplan (1982) and Coan and Valentich-Scott (2012)] and 
later compared with synoptic collections deposited in the 
National Museum of Natural History. For molecular analy-
ses, we sampled pieces of gill, mantle, and digestive gland 
and preserved them in 95 % ethanol. The majority of shells 
were thoroughly cleaned, dried, labeled with unique identi-
fication numbers, and retained as vouchers.

DNA extraction, PCR amplification, and sequencing

Following an overnight digestion with proteinase K, we 
extracted genomic DNA from all three tissues sampled, 
which were pooled into a single extraction, using a Qiagen 
Biosprint Kit (Qiagen, Valencia, California) following the 
manufacturer’s protocols for animal tissues. All extractions 
completed within the same day included a blank extraction, 
which served as a negative extraction control for PCR.

PCR amplification was carried out using primers 
jgLCO1490 (5′-TNTCNACNAAYCAYAARGAYATTGG-3′) 
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and jgHCO2198 (5′-TANACYTCNGGRTGNCCRAARAA 
YCA-3′) from Geller et  al. (2013), which amplifies a >660 
base pair (bp) fragment of the mitochondrial COI gene. PCR 
reagents consisted of 1X GeneAmp 10X PCR Gold Buffer 
(150 mM Tris–HCl, pH 8.0; 500 mM KCl; Applied Biosys-
tems, Carlsbad, California), 2 mM MgCl2, 0.2 mM of each 
nucleotide, 0.4  μM of each primer, 0.2  mg/mL of bovine 
serum albumin (BSA; New England Biolabs, Ipswich, Mas-
sachusetts), and 0.03 units/μL of AmpliTaq Gold with water 
to a final volume of 20 μL. Thermocycling was carried out 

using a Peltier Thermo Cycler DNA Engine Tetrad 2 (Bio-
Rad, Hercules, California) with an initial denaturation of 
94 °C for 10 min, 35 cycles of 94 °C for 1 min, 48–52 °C 
for 90 s, 72 °C for 1 min, and a final elongation of 72 °C for 
5 min.

To ensure that the individuals identified as Saccostrea 
sp. with the COI sequences were not intergenic hybrids, 
we also amplified a subset of samples using ITS1-A 
(5′-GGTTTCTGTAGGTGAACCTGC-3′) and ITS1-B 
(5′-CTGCGTTCTTCATCGACCC-3′) (Hedgecock et  al. 

A

B

C

Fig. 1   Map of sampling sites in Panama including a the Canal-
Caribbean, b the Canal-Pacific, and c Bocas del Toro. The locations 
where Saccostrea sp., C. virginica, and C. rhizophorae were found 
are shown. The black circles indicate sampling locations where 
these three species were not detected. When either Crassostrea spe-

cies or Saccostrea sp. was found, the circles are colored according 
to species. The percent shading corresponds to the number of species 
detected in each location and is not representative of the number of 
individuals or sequences per species
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1999), which amplifies a >450 bp of the first internal tran-
scribed spacer (ITS1) region of the ribosomal gene com-
plex within the nuclear genome. PCR reagents consisted 
of 1X GeneAmp 10X PCR Gold Buffer (150  mM Tris–
HCl, pH 8.0; 500 mM KCl; Applied Biosystems), 1.5 mM 
MgCl2, 0.2 mM of each nucleotide, 0.5 μM of each primer, 
0.2 mg/mL of bovine serum albumin (BSA; New England 
Biolabs), and 0.025units/μL of AmpliTaq Gold with water 
to a final volume of 20 μL. Thermocycling was carried out 
using a Peltier Thermo Cycler DNA Engine Tetrad 2 (Bio-
Rad) with an initial denaturation of 94 °C for 10 min, 35 
cycles of 94  °C for 30  s, 52–57  °C for 1  min, 72  °C for 
45  s, and a final elongation of 72 °C for 5 min. For each 
assay, an aliquot of the PCR product (5μL) was electro-
phoresed on an agarose gel (2 % w/v) stained with GelRed 
(Phenix Research, Candler, North Carolina) and visualized 
under UV light.

We directly cycle sequenced all amplified fragments, in 
both the forward and reverse directions, using the Big Dye 
Terminator Cycle Sequencing Kit v3.1 (Applied Biosys-
tems, Inc.) and sequenced the amplicons on an ABI 3130 
Sequencer (Applied Biosystems, Inc.).

Sequence analysis

Sequences were edited using Sequencher 5.1 (Gene Codes 
Corporation, Ann Arbor, Michigan). All COI sequences 
were checked for open reading frames, and all duplicate 
sequences for each putative species were removed prior to 
the phylogeny constructions. Sequences were aligned in 
Geneious 7.1.5 (Biomatters, Ltd., San Francisco, Califor-
nia) with MUSCLE (Edgar 2004) or MAFFT (Katoh et al. 
2002; Katoh and Toh 2008) using default parameters, with 
minor manual adjustments as necessary. The COI alignment 
for the Ostreidae dataset was 655 bp, the Pinctada dataset 
was 651  bp, and the Isognomon dataset was 609  bp; the 
ITS1 alignment for Saccostrea was 757 bp. The extended 
length of the ITS1 alignment is due to the presence of 
many large indels when all three genera are included. To 
determine whether these indels influenced the results, we 
used the Gblocks server (Castresana 2000) with both more 
stringent (not allowing many contiguous non-conserved 
positions) and less stringent (allowing smaller final blocks, 
gap positions within the final blocks, and less strict flank-
ing positions) parameters to remove the less conservative 
portions of the alignment. The resulting alignments (more 
stringent = 184 bp, less stringent = 463 bp) were subjected 
to the same or similar analyses as the original alignment 
(see below). The resulting phylogenetic trees were highly 
congruent for all alignments, so only the results of the full 
alignment (757  bp) are shown. JModeltest 2.1.4 (Darriba 
et  al. 2012) was used to determine the best substitution 
models (ESM Table S2) for both COI and ITS1 alignments 

based on Akaike information criterion (AIC) corrected val-
ues using the appropriate number of available substitution 
models for Bayesian and maximum likelihood (ML) analy-
ses. Bayesian analyses for each dataset using the suggested 
substitution model were performed in Geneious 7.1.5 with 
MrBayes 2.0.6 (Ronquist and Huelsenbeck 2003) using 
the default parameters for the Isognomon and Pinctada 
datasets. For the Ostreidae dataset, the parameters were 
changed to 2,200,000 generations, with a 200,000 tree 
burn-in, and sampling every 400 trees. Maximum likeli-
hood analyses for each dataset with the suggested substi-
tution model were also performed in Geneious 7.1.5 using 
PhyML (Guindon et  al. 2010) with the BEST topology 
search option and 1000 bootstrap replicates.

Distance analyses were conducted using MEGA v6 
(Tamura et  al. 2013) for the COI and ITS1 alignments 
separately. For the ITS1 calculations, a separate alignment 
containing only the ITS1 sequences for the Saccostrea spe-
cies was generated as described above. For both the within 
species (ITS1 only) and between species (COI, ITS1) cal-
culations, the number of base pair differences per site was 
averaged over all sequence pairs (using 500 bootstrap rep-
licates, maximum composite likelihood method, allow-
ing for transitions and transversions, using uniform rates 
among sites, and removing all ambiguous positions for 
each sequence pair).

Results

We generated 174 COI sequences (GenBank accession 
numbers KP455010–KP455072), including 63 different 
haplotypes representing seven species within the Ostreidae, 
two species of Isognomon (Isognomonidae), and one spe-
cies of Pinctada (Pteriidae) (Figs. 2, 3, 4; Table 1). There 
were 47 haplotypes that were unique to a single location 
(Table  1). Bayesian and maximum likelihood analyses of 
each dataset produced highly similar topologies, particu-
larly for the nodes with high support. No species were 
found to occur on both the Caribbean and Pacific coasts of 
Panama.

On the Pacific coast, we recovered one species each 
belonging to the genera Striostrea (morphologically iden-
tified as S. prismatica), Saccostrea (morphologically iden-
tified as S. palmula), and Crassostrea (morphologically 

Fig. 2   Phylogram for Ostreidae constructed using newly generated 
COI sequences (in bold) and GenBank data; the HKY+I+G substitu-
tion model for the Bayesian analysis, and TrN+I+G model for the 
maximum likelihood analysis, produced highly similar topologies. 
Sequences from this study are in bold. Posterior probabilities fol-
lowed by bootstrap values are included at the nodes. If only a single 
value is present, it is the posterior probability. See text for additional 
details

▸
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Fig. 3   Representative vouch-
ers for a all seven species 
of Ostreidae and b the three 
species of Pterioidea that were 
collected and sequenced from 
Panamanian waters. The species 
shown in 3A are as follows: A. 
Striostrea prismatica, B. Sac-
costrea palmula, C. Crassostrea 
columbiensis, D. Saccostrea sp., 
E. Saccostrea sp., F. Crassos-
trea virginica, G. Crassostrea 
rhizophorae, H. Dendostrea 
frons. The species shown in 
3B are as follows: A. Pinctada 
imbricata, B. Isognomon alatus, 
C. Isognomon sp. Scale bars 
2 cm
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identified as C. columbiensis); unfortunately, there are no 
previously published COI sequences of these species for 
comparison (Fig.  2). On the Caribbean coast, we recov-
ered two species of Crassostrea, one species of Dendos-
trea (morphologically identified as D. frons), and one spe-
cies of Saccostrea. Although all Crassostrea individuals 
were tentatively identified in the field as C. rhizophorae, 
subsequent morphological and molecular (COI) analyses 
indicated that both C. virginica and C. rhizophorae are 
present on the Caribbean coast, and that the two occur in 
sympatry (Figs. 1, 2). Average genetic distance values for 
the COI sequences between all species of Crassostrea 
ranged from 0.01–0.45 (±0.0 −  0.19 SE), with the aver-
age genetic distance between the C. rhizophorae sequences 
from this study and previously published sequences being 
0.01 (±0.00 SE). Additionally, the average genetic distance 
between C. virginica sequences from this study and previ-
ously published sequences was 0.03 (±0.01 SE).

COI sequences of individuals identified as Saccostrea 
from the Caribbean coast were found to be genetically 
distinct from S. palmula from the Pacific coast and clus-
tered with sequences obtained from GenBank identified as 

S. cucullata from Japan and the South China Sea (Fig. 2), 
from published (Sekino and Yamashita 2013) and unpub-
lished sources. However, all S. cucullata COI sequences 
obtained from GenBank do not form a monophyletic clade 
(see “Discussion”). The average genetic distance values 
for the COI sequences between all species of Saccostrea 
ranged from 0.004 to 0.23 (±0.0012−0.08 SE), with the 
average genetic distance between the Saccostrea sp. from 
the Caribbean and the S. cucullata sequences in the same 
clade being 0.004 (±0.0012 SE).

Based on morphological criteria, we identified one oys-
ter collected from Bocas del Toro as D. frons, although the 
sequence for this individual does not cluster with the only 
COI sequence obtained from GenBank from an unpub-
lished source (Fig.  2). Average genetic distance values 
for the COI sequences between all species of Dendostrea 
ranged from 0.17 to 0.23 (±0.06 − 0.08 SE). The average 
genetic distance between the D. frons sequences from this 
study and previously published sequences was 0.17 (±0.08 
SE).

Also on the Caribbean side of Panama, the morpho-
logical and molecular results confirmed the identification 
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of Pinctada imbricata from Bocas del Toro (Fig. 4a). The 
genetic distance between the P. imbricata sequences from 
this study and previously published sequences was 0.02 
(±0.01 SE). In addition, our results confirmed the presence 
of Isognomon alatus (Fig.  4b) from the STRI Dock. The 
average genetic distance between the I. alatus sequences 
from this study and previously published sequences was 
0.00 (±0.00 SE). We also found another species, Isog-
nomon sp. (Wilk, unpubl. data), which was widespread 
through Panamanian waters (Fig. 4b; Table 1).

We generated 29 ITS1 sequences (GenBank acces-
sion numbers KP455073–KP455090) from the Caribbean 
Saccostrea species (Table 1), including 18 haplotypes, 14 
of which were unique to a given location, which formed 
a monophyletic clade with published sequences of Sac-
costrea species (ESM Fig. S1), indicating that these indi-
viduals are not intergenic hybrids. Based on the ITS1 
sequences, the average genetic distance between all species 
of Saccostrea ranged from 0.01 to 0.03 (±0.00−0.01 SE), 
the average genetic distance between Saccostrea sp. in the 
Caribbean and other Saccostrea species ranged from 0.020 
to 0.028 (±0.006−0.01 SE), and the average genetic dis-
tance between Saccostrea sp. in the Caribbean and other 
Saccostrea cucullata sequences was 0.028 (±0.01 SE).

Discussion

First record of the genus Saccostrea in the Caribbean

We discovered a non-indigenous species of Saccostrea, 
apparently a member of the S. “cucullata” species complex 
that is native to the Indo-Pacific, is now widespread along 
the Caribbean coast of Panama. This is the first published 
record of a Saccostrea species occurring in the Caribbean 
Sea, with the geographic range and abundance indicat-
ing that it is established in the basin. The resulting COI 
sequences are virtually identical to sequences from S. cuc-
ullata collected in Japan and the South China Sea (Fig. 2), 
indicating a potential source for this invasion. Saccostrea 
cucullata was described from India, and currently is under-
stood to be indigenous to rocky shores throughout the Indo-
Pacific (Lam and Morton 2006) and along the south and 
east coasts of Africa (Haupt et al. 2010). However, COI and 
16S sequences have demonstrated that S. “cucullata” rep-
resents a cryptic species complex comprising as many as 
seven species, often with broadly overlapping geographic 
distributions (Lam and Morton 2006; Sekino and Yamash-
ita 2013). To further complicate the issue, S. “cucullata” is 
believed to have been introduced to a number of locations 
where it has become established, including Hawaii (Coles 
et  al. 1999), the Mediterranean Sea, and the Suez Canal 
(Galil and Zenetos 2002). While our morphological and 

molecular data clearly demonstrate that the species we col-
lected is a member of Saccostrea, a genus not indigenous 
to the Caribbean, assigning these individuals to the correct 
taxonomical species requires a comprehensive systematic 
revision of the S. “cucullata” complex and is beyond the 
scope of this analysis.

The uncertainty regarding taxonomic identity notwith-
standing, we know that the Saccostrea species is not only 
present, but widespread in Panamanian waters, occurring 
at locations near the Caribbean entrance to the Panama 
Canal and at Bocas del Toro, >250 km apart (Fig. 1). When 
present, individuals were abundant, and typically found 
attached to mangrove rhizophores in close association with 
C. rhizophorae. We cannot definitively ascertain how and 
when Saccostrea was introduced into the Caribbean, espe-
cially since this species is not commercially harvested and 
was unlikely to be the result of an intentional introduction 
(for which there are sometimes records). However, Panama 
serves as a hub for international shipping and movement of 
recreational vessels (Ruiz et al. 2009), making it likely that 
this species was introduced via shipping or boating activity. 
Similarly, the Pacific jingle shell, A. peruviana (Schlöder 
et  al. 2013) and the mud crab, Rhithropanopeus harrisii 
(Roche and Torchin 2007), were potentially introduced 
through maritime traffic in Panama.

Expanded geographic range of Crassostrea virginica

Previous reports indicate the geographic range of C. vir-
ginica extends from the Gulf of St. Lawrence in Canada, 
south to the Gulf of Mexico, and also includes Venezuela 
(Stanley and Sellers 1986). This study expands the known 
geographic range for this species to include the Caribbean 
waters of Panama, specifically the coastal waters near the 
Panama Canal (Fig. 1).

Genetic markers were previously used to demon-
strate that C. virginica and C. rhizophorae are sister taxa 
(Lazoski et  al. 2011). These two morphologically similar 
species were thought to prefer different habitat types, with 
C. virginica occurring primarily in intertidal and subtidal 
depths attached to hard substrates (Stanley and Sellers 
1986) and C. rhizophorae attached to the roots of man-
grove trees from the Caribbean Sea south to Brazil (Car-
riker and Gaffney 1996). Indeed, Littlewood and Donovan 
(1988) attempted to differentiate between the two species 
based on habitat preference. In contrast, our data indicate 
that C. virginica and C. rhizophorae can and do co-occur 
in the same habitat, as both species were found growing 
on mangrove rhizophores. However, we only recovered C. 
virginica from two neighboring locations (Fig. 1), where it 
was found to occur in a much lower abundance compared 
to C. rhizophorae. Additional studies are needed to further 
assess the abundance and distribution of C. virginica in this 
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area, and to further explore its habitat preferences, espe-
cially in sympatry with C. rhizophorae.

Insights from the molecular phylogenies

As in previous studies, this work demonstrates the power of 
combining molecular with morphological data to confirm 
the identities of species that are difficult to delineate with 
morphological characters alone. Although COI sequences 
alone cannot be expected to robustly resolve deeper nodes 
within and among genera and families, our results are con-
sistent with those of Tëmkin (2010), who also found high 
support, for the Pinctada imbricata/fucata/radiata spe-
cies complex. However, the COI results for the Isogno-
mon species in this study appear quite different from the 
results of Tëmkin (2010), which either reflects the limits 
of the resolving power of this marker or issues associated 
with inadequate taxon sampling (in this case, due to a lack 
of available COI sequences for Isognomon species). Our 
results are consistent with those of Wilk (unpubl. data), 
who has evidence of two sympatric species of Isognomon 
in peninsular Florida, I. alatus, and Isognomon sp. Addi-
tionally, the sequences we generated for D. frons did not 
form a monophyletic clade with the D. frons sequence 
obtained from GenBank, indicating this species may com-
prise a cryptic species complex; however, without more 
sequences or verification of the identity of the sequenced 
specimen cited in GenBank, this remains speculative.

Our results are also consistent with those of Polson et al. 
(2009), based on analysis of COIII and 16S mitochondrial 
sequences, and Shilts et al. (2007), based on 16S sequences, 
both of which supported the non-monophyly of Ostrea, 
Dendostrea, and Lopha, indicating that all three genera are 
in urgent need of comprehensive systematic revision.

Conclusions

This study confirmed the presence of a non-native oyster 
that is established in the Caribbean and provides the first 
report of C. virginica in Panamanian waters. These results 
emphasize the need for major systematic revisions within 
the Ostreidae, namely resolving the species-level relation-
ships within the Saccostrea “cucullata” complex as well as 
a re-examination of the monophyly and affinities of Ostrea, 
Dendostrea, and Lopha. Given the functional importance 
of oysters as ecosystem engineers and their vital roles in 
many coastal ecological processes (Newell 2004; Kemp 
et al. 2005; Coen et al. 2007), including detection of par-
asites and other problematic microbes (Ford et  al. 2009), 
identifying the biogeographic distributions for these spe-
cies is crucial to understanding and managing coastal eco-
systems. Finally, this study highlights both the utility and 

opportunity of combining morphological and molecular 
tools to resolve identification and biogeography for oysters 
and other challenging taxonomic groups.
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