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 Introduction 

 Haller’s Rule holds that the brains of smaller animals 
are proportionally larger than those of large-bodied 
forms [see Rensch, 1948]. This allometric relationship be-
tween body and brain size has been documented exten-
sively for vertebrates [Cuvier, 1845; Harvey and Krebs, 
1990; Hanken and Wake, 1993; Striedter, 2005; Gonzalez-
Voyer et al., 2009]. In contrast, relatively little is known 
about brain allometry for the numerous invertebrate taxa 
with extremely small body sizes, such as tardigrades 
[Zantke et al., 2008] or Arthropoda (insects, mites and 
spiders) [see also Rensch, 1948; Cole, 1985]. This dearth 
of information is surprising because such small animals 
dominate earth’s biodiversity [Grimaldi and Engel, 2004], 
and long ago Darwin [1871, p. 145] called attention to the 
ant brain as being ‘marvellous’, because such an ‘extreme-
ly small’ mass of nervous tissue could generate ‘extraor-
dinary mental activity’. Kern [1985] presented data on 
brain and body mass for 36 species in 8 orders of insects, 
but did not statistically analyze the allometric relation-
ships. The most extensive allometric study on inverte-
brate brains presented data from 10 ant species, albeit 
with limited taxon sampling: 5 species were in the genus 
 Cataglyphis  and 5 were from 2 other genera (all from 1 
subfamily, Formicinae) [Wehner et al., 2007]. That study 
demonstrated that the allometric scaling component for 
ants (b = 0.57) was similar to that for birds (b = 0.58) and 
reptiles (b = 0.54) but significantly different from that of 
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 Abstract 

 Extensive studies of vertebrates have shown that brain size 
scales to body size following power law functions. Most
animals are substantially smaller than vertebrates, and ex-
tremely small animals face significant challenges relating
to nervous system design and function, yet little is known 
about their brain allometry. Within a well-defined monophy-
letic taxon, Formicidae (ants), we analyzed how brain size 
scales to body size. An analysis of brain allometry for indi-
viduals of a highly polymorphic leaf-cutter ant,  Atta colom-
bica,  shows that allometric coefficients differ significantly
for small ( ! 1.4 mg body mass) versus large individuals (b = 
0.6003 and 0.2919, respectively). Interspecifically, allometric 
patterns differ for small ( ! 0.9 mg body mass) versus large 
species (n = 70 species). Using mean values for species, the 
allometric coefficient for smaller species (b = 0.7961) is sig-
nificantly greater than that for larger ones (b = 0.669). The 
smallest ants had brains that constitute  � 15% of their body 
mass, yet their brains were relatively smaller than predicted 
by an overall allometric coefficient of brain to body size. Our 
comparative and intraspecific studies show the extent to 
which nervous systems can be miniaturized in taxa exhibit-
ing behavior that is apparently comparable to that of larger 
species or individuals.  Copyright © 2011 S. Karger AG, Basel 
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mammals (b = 0.77). Yet the smallest species reported in 
that study was  � 2.5 mg, which is relatively large in com-
parison to many arthropods. In contrast, there are de-
tailed volumetric brain studies of particular beetle (Cole-
optera) or Strepsiptera species with extremely small body 
sizes [e.g. Beutel et al., 2005; Grebennikov, 2008; Polilov, 
2008; Polilov and Beutel, 2010], but there are no data for 
closely related large-bodied forms.

  Here we ask whether the scaling relationships ob-
served in other taxa hold for animals with very small 
body sizes compared with large-bodied relatives? We 
studied intraspecific brain scaling in the leaf-cutter ant, 
 Atta colombica,  in which body mass spans 3 orders of 
magnitude, and polymorphic workers differ in behavior 
and physiology [Weber, 1972; Hölldobler and Wilson, 
1990]. Furthermore,  Atta  ants have a diphasic cephalic 
allometry [Wilson, 1953], so we also tested for diphasic 
allometry in brain volume. Interspecifically, we extend-
ed an earlier study of brain scaling in ants [Wehner et 
al., 2007] by substantially increasing the number of spe-
cies (n = 70 vs. 10); the taxonomic coverage (31 genera 
from 5 subfamilies and 2 informal groupings vs. 3 gen-
era from 1 subfamily); and we included species that are 
over 60 times smaller (0.039 vs. 2.5 mg body mass), 
spanning approximately 4 orders of magnitude among 
species.

  Materials and Methods 

 Ant Collections 
 For the intraspecific study, specimens were collected from a 

single nest of  Atta colombica  in Gamboa, Colon Province, Repub-
lic of Panama. There is extensive continuous size variation among 
 Atta  workers [Weber, 1972], and to sample the full range of size 
variation we dug into various fungus chambers and collected 
workers in or near the gardens, along with soldiers; newly emerged 
callow workers were excluded, but otherwise the ages of individu-
als were unknown. Individuals of 70 ant species were collected 
either from queen-right laboratory colonies or as individual for-
agers, either in the vicinity of Gamboa, or near Gainesville, Fla., 
USA ( table 1 ). Voucher specimens are deposited in the Dry Refer-
ence Collection of the Smithsonian Tropical Research Institute, 
and the Museo de Invertebrados ‘Graham Fairchild’ de la Univer-
sidad de Panamá.

  Interspecific Body and Brain Measurements 
 In most ant species there is continuous variation in worker size 

[Hölldobler and Wilson, 1990], but some species are monomor-
phic (i.e. a single mode in worker body size distribution), while 
others are polymorphic (i.e. multiple modes in the distribution of 
worker body size). It may be problematic to compare workers hav-
ing different social roles among different species (e.g. large sol-
diers vs. small workers), or monomorphic and polymorphic spe-

cies. Furthermore, the sampling among taxa was uneven because 
we included multiple individuals for the polymorphic species in 
order to capture the full size range in polymorphic species ( ta-
ble 1 ). To address these 2 problems, we conducted 1 set of analyses 
using the full data set (n = 261 ants from 70 species), and a second 
set of analyses using mean values for each species (n = 70); we re-
fer to these as full and reduced data sets, respectively.

  Histological Brain Sectioning and Volumetric Reconstructions 
for   Atta colombica   
 Ants were weighed using an AND �  GR-202 microbalance (ac-

curacy to 0.01 mg). The brain of each ant was quickly removed 
from the head capsule and immediately placed in fixative (6% glu-
taraldehyde, 2% paraformaldehyde in 0.1  M  cacodylate buffer) in 
preparation for standard histological sectioning. After fixation 
for 12–24 h, the brains were rinsed in cacodylate buffers and post-
fixed in 1–1.5% osmium tetroxide for 2–3 h. The brains were then 
rinsed in buffer followed by H 2 O and dehydrated in DMP and 
acetone in preparation for embedding in Epon � . Brains were in-
filtrated in Epon, by first placing them in a 50/50 mixture of Epon/
acetone and then transferring them to 100% Epon. They were 
then embedded in Epon in Beem �  capsules and cured at 60   °   C 
overnight. Embedded brains were sectioned in a microtome (Mi-
crom �  HM 355s) at 5- � m sections using stainless steel disposable 
knives. Serial sections were kept in order and placed individually 
on glass slides and then stained with toluidine blue. Coverslips 
were then placed over the sections using Permamont �  and the 
sections were photographed using a Nikon �  8700 camera at-
tached to a Nikon �  Eclipse E600 compound microscope. Serial 
digital sections were then imported into a computer, and were 
traced, aligned and stacked using the program Reconstruct [Fiala, 
2005] to calculate the 3-D volume of each brain.

  Measurements of Brain Mass for Interspecific Comparisons 
 For the interspecific study we used brain mass as a measure of 

size. Collected ants were weighed using a Sartorius �  CPA2P mi-
crobalance after their removal from laboratory colonies or usu-
ally within 24 h after collection from the field. Collected ants were 
dissected under cold Ringer’s solution (150 m M  NaCl, 24 m M  KCl, 
7.0 m M  CaCl2, 4.0 m M  MgCl2, 5.0 m M  HEPES buffer, and 131 m M  
sucrose, pH = 7.0). The brain, including both the supra- and sub-
esophageal ganglion and all sensory lobes, was quickly removed 
from the head capsule, usually in less than 1 min, and then cleaned 
of all tracheae and fat bodies. Each brain was then placed on a 
small piece of tared Parafilm �  within a small droplet of Ringer’s 
solution. The Ringer’s solution was wicked away using finely 
twisted pieces of Kimwipes �  and the brain was weighed within
4 s. To assess weight loss due to water evaporation from exposed 
brains, we measured weight loss through time for 5 ants of differ-
ent body sizes. The steepest rate of water loss occurred within the 
first 20 s following removal from Ringer’s solution (data not 
shown). We used data points for the first 20 s starting at the time 
we could detect weight loss, given the 1- � g resolution of the bal-
ance, to calculate the slope of the rate of weight loss from a linear 
regression, and we took this to be the maximum rate loss. We used 
this worst-case slope to calculate the expected loss of weight over 
the interval needed to prepare and weigh the specimen, and then 
expressed this weight loss as a percentage of total brain mass 
( fig. 1 ).
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Genus Morph
category

Body size 
rangea, mg

Brain size 
rangea, mg

Mean brain 
sizea, mg

n

Myrmicinae
Acromyrmex echinatior P 0.658–22.244 0.006–0.255 0.127 20
Apterostigma sp. 1 M 0.510–0.737 0.041–0.042 0.042 3
Apterostigma sp. 2 M 0.724–0.750 0.048–0.054 0.051 3
Apterostigma sp. 3 M 2.280–2.482 0.080–0.084 0.082 3
Atta colombica P 0.410–49.546 0.033–0.238 0.115 17
Cyphomyrmex cornutus M 0.347–0.433 0.025–0.032 0.029 3
Cyphomyrmex longiscapus M 0.347–0.429 0.023–0.035 0.028 3
Cyphomyrmex muelleri M 0.457–0.607 0.032–0.035 0.033 3
Cyphomyrmex sp. 1 M 0.385–0.435 0.027–0.035 0.030 3
Mycetophylax sp. M 1.399–1.574 0.044–0.050 0.047 3
Mycrocepurus smithii M 0.302–0.338 0.021–0.024 0.022 3
Myrmicocrypta cf. ednaella M 0.310–0.329 0.020–0.029 0.023 3
Sericomyrmex sp. M 1.127–1.514 0.048–0.058 0.053 3
Trachymyrmex coniktzi (1) M 0.863–0.939 0.045–0.050 0.047 3
Trachymyrmex cornetzi (2) M 1.115–1.356 0.051–0.074 0.060 3
Trachymyrmex sp. 1 M 1.117–1.248 0.048–0.052 0.050 3
Trachymyrmex sp. 2 M 2.149–2.373 0.062–0.074 0.070 3
Trachymyrmex zeteki M 1.971–2.282 0.061–0.066 0.064 3
Cephalotes atratus P 21.025–42.506 0.341–0.428 0.417 5
Cephalotes sp. 1 P 3.160–11.560 0.100–0.190 0.140 6
Cephalotes umbraculatus M 7.98 0.160 0.160 1
Crematogaster sp. M 0.795 0.044 0.044 1
Megalomyrmex sp. 1 M 0.137 0.010 0.010 1
Megalomyrmex sp. 2 M 1.147–1.231 0.044–0.051 0.057 2
Monomorium floricola M 0.065 0.006 0.006 1
Monomorium trageri M 0.098–0.104 0.009–0.011 0.010 3
Pheidole obscurithorax D 0.539–0.569 0.029–0.031 0.030 3
Pheidole sp. 1 D 0.093 0.008 0.008 1
Pheidole sp. 2 D 0.234 0.016 0.016 1
Pheidole sp. 3 D 0.069 0.008 0.008 1
Pheidole sp. 4 D 0.102 0.011 0.011 1
Pheidole sp. 5 D 0.254 0.020 0.020 1
Pheidole sp. 6 D 0.122 0.013 0.013 1
Pheidole sp. 7 D 0.873–1.181 0.047–0.055 0.049 3
Pheidole sp. 8 D 0.964–1.365 0.042–0.051 0.047 3
Pheidole sp. 9 D 0.471–0.587 0.028–0.029 0.028 3
Pogonomyrmex badius P 3.503–40.379 0.112–0.240 0.139 20
Solenopsis sp. 1 M 0.086–0.111 0.010–0.010 0.010 2
Solenopsis sp. 2 M 0.473 0.031 0.031 1
Wasmannia auropunctata M 0.109 0.007 0.007 1

Ectatomminae
Ectatomma ruidum M 8.184–12.878 0.208–0.232 0.220 2
Ectatomma tuberculatum M 15.950–21.090 0.380–0.400 0.387 3
Gnamptogenys sp. 1 M 0.576 0.028 0.028 1
Gnamptogenys sp. 2 M 9.873 0.244 0.244 1

Dolichoderinae
Azteca sp. 1 M 0.717 0.051 0.051 1
Azteca sp. 2 M 1.743 0.072 0.072 1
Dolichoderus sp. M 3.963–5.202 0.135–0.140 0.138 3
Tampinoma melanocephalum M 0.132 0.011 0.011 1
Brachymyrmex sp. 1 M 0.039–0.049 0.005–0.007 0.006 3
Brachymyrmex sp. 2 M 0.064–0.085 0.006–0.007 0.006 3

Table 1.  List of taxa included in allometric analyses, with ranges for body and brain sizes, and mean brain size
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  Statistical Methods 
 We used the statistical package R for the piecewise regression 

analyses, as well as for the comparisons of slopes by utilizing the 
‘smatr’ library [Crawley, 2007]. Piecewise regression is a statistical 
method to split a single linear regression to assess whether a 2-slope 
model, or one with more slopes, would better fit the data than a 
1-slope model [McGee and Carleton, 1970], and is commonly used 
in identifying different growth trajectories for dimorphic or poly-
morphic phenotypes in insects [e.g. Eberhard and Gutierrez, 1991; 
Eberhard et al., 2000]. The breakpoint is the point at which the tra-
jectory of 1 morphotype changes to another. Breakpoints are iden-
tified by analyzing multiple models and selecting the one with the 
lowest residual standard errors (RSE) as providing the best fit. To 
access the location of the breakpoint, we fitted models for different 
breaks in the data using R [Crawley, 2007], and then visually in-
spected the RSE. To assess the robustness of the breakpoint, we 
repeated the regression analyses manually at each of 4 additional 
breakpoints, at 0.1- and 0.2-mg increments above our statistically 
identified breakpoint, and at 0.1 and 0.2 mg below this initial 
breakpoint. For each of the 4 new breakpoints we recalculated R 2  
values and RSE. In each comparison the original breakpoint had 
the highest R 2  and lowest RSE values. We also tested whether a 

Genus Morph
category

Body size 
rangea, mg

Brain size 
rangea, mg

Mean brain 
sizea, mg

n

Formicinae
Camponotus sericeiventri P 37.39 0.440 0.440 1
Camponotus sp. 1 M 5.0525 0.184 0.184 1
Camponotus sp. 2 P 7.720–36.540 0.190–410 0.295 13
Camponotus sp. 3 P 13.940–37.390 0.310–0.360 0.304 9
Paratrechina longicornis M 0.342 0.028 0.028 1

Dorylomorphs
Eciton burchellii P 1.503–33.395 0.079–0.305 0.202 31
Nomamyrmex sp. P 6.555–17.234 0.169–0.238 0.204 4

Poneromorphs
Odontomachus bauri M 15.626–15.939 0.292–0.332 0.312 2
Odontomachus brunneus M 5.828–6.557 0.190–0.193 0.192 2
Odontomachus hastatus M 22.970–27.680 0.410–0.460 0.430 3
Pachycondyla apicalis M 39.685–41.749 0.606–0.711 0.659 2
Pachycondyla obscuricornis M 15.129–15.226 0.369–0.424 0.397 2
Pachycondyla sp. 1 M 9.7 0.190 0.190 1
Pachycondyla sp. 2 M 4.358–4.599 0.148–0.162 0.155 2
Pachycondyla sp. 3 M 2.723 0.075 0.075 1
Pachycondyla villosa M 41.480–51.390 0.470–0.521 0.503 3
Paraponera clavata M 153.89–183.68 1.620–1.750 1.730 3

Pseudomyrmecinae
Pseudomyrmex sp. 1 M 2.889 0.135 0.135 1
Pseudomyrmex sp. 2 M 0.460–0.537 0.038–0.050 0.045 3
Pseudomyrmex sp. 3 M 4.850–5.606 0.259–0.281 0.277 3

P  = Polymorphic; M = monomorphic; D = dimorphic, but only the minor subcaste was used. 
a Range and mean not given for these taxa represented by singletons.

Table 1 (continued)
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  Fig. 1.  Estimated maximum weight loss due to water evaporation 
as a function of brain weight during the time needed to prepare a 
specimen. 
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model of 3 slopes would significantly improve the fit, because of 
the well-known observation that more complex models better fit 
the data than less complex ones [see discussion in Striedter, 2005].

  We used major axis regression to account for error in both the 
x-axis and y-axis, and comparisons of slopes were performed as 
outlined by Warton et al. [2006], using the sample correlation be-
tween residuals and fitted values. We calculated phylogenetically 
independent contrasts to account for an expected lack of indepen-
dence associated with phylogenetic structure [Felsenstein, 1985; 
Harvey and Pagel, 1991; Ricklefs and Starck, 1996], using log-
transformed data analyzed with the PDAP module [Midford et al., 
2005] in MESQUITE v. 2.72 [Maddison and Maddison, 2007]. The 
phylogeny from Brady et al. [2006] was used to create a tree at the 
generic level for the taxa in our analysis. Ants within a single genus 
were designated in the tree as an unresolved polytomy for this 
analysis. We set branch lengths to 1, and subtracted 1 degree of 
freedom for each polytomy in our analysis to yield our phyloge-
netic independent contrast slope for our data [Harvey and Pagel, 
1991]. In additional analyses, we removed all polymorphic species 
[ sensu  Hölldobler and Wilson, 1990], and in cases where there 
were multiple individuals per species, we calculated a mean value 
for each species’ brain and body mass, and repeated the analyses.

  Results 

 The allometric relationship between brain volume and 
body mass was significant for individuals of the highly 
polymorphic species  Atta colombica  (n = 48; F 1,46  = 612.2, 
p  !  0.0001) ( fig. 2 a). A piecewise regression model with 2 
regression equations fitted the data significantly better 
than a single-slope model, with a breakpoint at 1.4 mg 
body mass (ANOVA, F 1,2  = 20.024, p  !  0.0001; 2-slope 
model – R 2  = 0.9634 and RSE = 0.09517; 1-slope model – 
R 2  = 0.9301 and RSE = 0.1286); a model with 3 slopes was 
not significantly different from the 2-slope model (F 1,2  = 
1.3937, p = 0.2594). The RSE for the  8 0.1 and  8 0.2 incre-
mental steps from this breakpoint (i.e. body masses of 1.2, 
1.3, 1.5, and 1.6 mg) were 0.1149, 0.1012, 0.1009, 0.1009, 
respectively, and all were greater than the RSE at the 1.4 
mg breakpoint. The allometric coefficient (the slope of 
the model) from the 2-slope model was significantly 
greater for the set of small  A. colombica  ( ! 1.4 mg) than 
the coefficient for larger individuals, or from the single-
slope model (BLR = 7.8269; p = 0.0052; BLR = 5.659, p = 
0.0017, respectively;  fig. 2 a). The coefficient for the larger 
 A. colombica  was significantly different from that of the 
single-slope model (BLR = 6.6981, p = 0.0096).

  Similar patterns of brain scaling were observed among 
70 species of ants (n = 261 individuals) using mass as a 
measure of brain size ( fig. 2 b). The allometric relationship 
was significantly different for ant species above and be-
low a breakpoint of 0.9 mg body mass ( fig. 2 b). A piece-

wise regression model with 2 equations fit the data sig-
nificantly better than a single-slope model (2-slope mod-
el: R 2  = 0.9475 and RSE = 0.2568; single-slope model –
R 2  = 0.9389 and RSE = 0.276; F 1,2  = 21.07, p  !  0.0001, 
 fig. 2 b), but a model with 3 slopes did not improve the fit 
(F 1,2  = 1.5871, p = 0.2065). The RSE for the  8 0.1 and
 8 0.2 incremental steps from the 0.9 mg breakpoint (i.e. 
body masses of 0.7, 0.8, 1.0, and 1.1 mg) were 0.2572, 
0.2570, 0.2574, and 0.2580, respectively, and all were 
greater than the RSE at the 0.9-mg breakpoint. As with 
the intraspecific analysis, the allometric coefficient for 
smaller ants ( ! 0.9 mg) from the 2-slope model was great-
er than that from the piecewise slope for the larger ants, 
or from the single-slope model [Bartlett-corrected likeli-
hood ratio (BLR) = 54.67, p  !  0.0001; BLR = 51.01, p  !  
0.0001, respectively;  fig. 2 b].

  Using a reduced data set based on mean values for spe-
cies, again a 2-slope model with a breakpoint at 0.9 mg 
body weight fitted the data significantly better than a sin-
gle-slope model (2-slope model – R 2  = 0.9762 and RSE = 
0.2071; single-slope model – R 2  = 0.972 and RSE = 0.2173; 
F 1,2  = 4.443, p = 0.016;  fig. 2 c), but a 3-slope model did not 
(F 1,2  = 0.289, p = 0.7433). The RSE for the  8 0.1 and  8 0.2 
incremental steps (i.e. body masses of 0.7, 0.8, 1.0, and 1.1 
mg) were 0.2113, 0.2072, 0.2074, 0.2088, respectively, and 
all were greater than the RSE at the 0.9-mg breakpoint. 
The slope for the smaller ants ( ! 0.9 mg) is again signifi-
cantly steeper than for larger ants or from the single-slope 
model (BLR = 5.7094, p = 0.016; BLR = 11.9467, p = 0.21, 
p = 0.0005, respectively;  fig.  2 c). Taking phylogenetic 
structure into account, the slope was not significantly 
different (sample correlation between residuals and fit-
ted values = –0.016, p = 0.8979). Plotting the ratio of 
brain:body mass against body mass yields a steep expo-
nential decay function (y = 0.0473e –0.3876x , R 2  = 0.8347) 
such that the proportion of body mass comprised of brain 
is substantially greater for the smallest ants; the smallest 
ants ( Brachymyrmex  sp.) had brains that accounted for 
 1 15% of their body mass ( fig. 2 d). Small ants ( ! 0.9 mg) 
occur in all the major taxa that we sampled, except for 
those in the informal groups dorylomorphs and ponero-
morphs ( fig. 3 ), so there is no basis to suspect that the dif-
ferences are taxon dependent rather than size dependent.

  Discussion 

 Even though the smallest ants in our study had rela-
tively massive brains, constituting  � 15% of their body 
mass, we observed no morphological modifications of 
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  Fig. 2.  Scatterplots showing how brain size in ants scales to body 
size.  a  Allometry for individuals of a leaf-cutter ant,  Atta colom-
bica , based on volumetric brain reconstructions (n = 48), with an 
overall regression of y = 0.3503x + 17.583 (R 2  = 0.9301) (solid gray 
line). A piecewise regression analysis with a breakpoint at 1.4 mg 
body mass yields 2 significantly different regressions: allometry 
for larger ants (black symbols) is described by y = 0.2919x + 17.753 
(R 2  = 0.9122) (blue line), and that for the smaller ones (gray sym-
bols) by y = 0.6003x + 17.469 (R 2  = 0.7354) (red line).  b  Allometric 
relationships for 70 ant species (n = 261 ants), with an overall re-
gression model of y = 0.5972x – 3.0419 (R 2  = 0.9389) (gray line).
A piecewise regression with a breakpoint at 0.9 mg body mass 
yields 2 significantly different regressions: allometry for larger 
ants (black symbols, and open blue circles) is described by y = 

0.5506x – 2.9446 (R 2  = 0.8477) (dashed blue line), and that for
the smaller ones (gray symbols, and open red circles) by y =
0.802x – 2.8089 (R 2  = 0.9359) (red line). Open circles indicate 
polymorphic species (see table 1).  c  Interspecific allometry for 
ants using a mean value for each species for those taxa represent-
ed by more than 1 individual, with an overall regression model of 
y = 0.671x – 3.0582 (R 2  = 0.9731) (gray line). A piecewise regres-
sion with a breakpoint at 0.9 mg body mass yields 2 significantly 
different regressions: allometry for larger ants (black symbols) is 
described by y = 0.6692x – 3.0681 (R 2  = 0.9258) (dashed blue line), 
and that for the smaller ones (gray symbols) by y = 0.7961x – 
2.8451 (R 2  = 0.9557) (red line).  d  Scatterplot of the ratio of 
brain:body mass against body mass for 70 ant species. 
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head shape or size to accommodate these proportionally 
large brains. Other small animals facing similar chal-
lenges from brain miniaturization have morphological 
adaptations in which the brain invades other body parts, 
such as the prothorax in larval insects [Beutel et al., 2005; 
Grebennikov, 2008], and the coxae in legs of spiders 
[Quesada et al., in prep.]. Although their brains are dis-
proportionately large as expected by Haller’s Rule, ex-
tremely small ants, both intra- and interspecifically, have 
brains that are smaller than would be expected if they fol-
lowed the allometric slope of larger ants. We do not know 
whether this shift represents a compensatory mechanism 
to cap energetic costs, or is related to constraints on head 
morphology. The latter alternative seems unlikely, how-
ever, given that macrocephaly has evolved repeatedly in 
ants [Hölldobler and Wilson, 1990], suggesting that brain 
size is not necessarily limited by head size.

  Diphasic allometries have been demonstrated for oth-
er traits in insects [Niven and Scharlemann, 2005; Eber-
hard et al., 2000], including studies of cephalic allometry 
in ants [Wilson, 1953], but were unknown for brain scal-
ing. Wilson [1953] hypothesized that diphasic allometry 
reflects a mechanism that helps to stabilize the head size 
of very small workers, while enabling the production of 
very different workers with only small differences in 
body size. We speculate that for polymorphic fungus-
growing ants, such as  Atta,  it may be advantageous to 
have a smaller-than-expected head size at the small end 
of the size spectrum because of the need for tiny workers 
to move about within the interstices of the fungus garden 
[Weber, 1972], while maintaining the neural capabilities 
to process information relating to the health of the fungal 
cultivar, detecting the presence of pathogens in the fun-
gal gardens, and implementing disease-control measures 
[e.g. Fernández-Marín et al., 2009]. Small versus large 
workers of 2 species of  Atta  differ in the relative size
of brain components [Kleineidam et al., 2005], and these 
differences may be related to differential behavioral re-
sponses in the 2 size classes [Kleineidam et al., 2007]. A 
detailed volumetric analysis of brain region size relative 
to head size will elucidate how brain regions influence 
total brain size [Seid, Elizondo and Wcislo, in prep.].

  In light of known behavioral differences among sub-
castes of  Atta  workers [Weber, 1972; Hölldobler and Wil-
son, 1990], and a report of diphasic cephalic allometry in 
 A. texana  [Wilson, 1953], we expected an allometric shift 
in brain allometry for  A. colombica.  A similar allometric 
shift in the interspecific study was surprising and may 
point to a general rule governing how ant brains are con-
structed beyond a critical size threshold. Our finding that 
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  Fig. 3.  Range of absolute brain mass for major subfamilies and 
taxonomic groupings used in this study. The phylogeny is taken 
from Brady et al. [2006].                                 



 Seid   /Castillo   /Wcislo    Brain Behav Evol 8

 References  Beutel RG, Pohl H, Hunefeld F (2005): Strep-
sipteran brains and effects of miniaturiza-
tion (Insecta). Arth Struct Develop 34:   301–
313.   

 Bonner JT (2006): Why Size Matters: From Bac-
teria to Blue Whales. Princeton, Princeton 
University Press.  

 Brady SG, Schultz TR, Fisher BL, Ward PS 
(2006): Evaluating alternative hypotheses for 
the early evolution and diversification of 
ants. Proc Natl Acad Sci USA 103:   18172–
18177. 

 Chittka L, Niven JE (2009): Are bigger brains 
better? Curr Biol 19:R995–R1008 . 

 Cole BJ (1985): Size and behavior in ants: con-
straints on complexity. Proc Natl Acad Sci 
USA 82:   8548–8551. 

 Crawley MJ (2007): The R Book. Chichester, 
Wiley.  

 Cuvier G (1845): Leçons d’anatomie comparée. 
Vol 3: contenant le système nerveux et les or-
ganes des sens, ed 2. Paris, Fortin, Masson et 
Cie. 

the allometric rules governing ant brain size change at 
extremely small body sizes, both within and among spe-
cies, was derived from 2 methods of measuring brain size, 
and therefore it is unlikely to be an artifact of the tech-
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cause so little is known about how brain size relates to 
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brain mass by small animals implies disproportionately 
high energetic costs, given that neuronal tissue is expen-
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to have information processing capabilities equivalent to 
large-bodied species [Niven and Laughlin, 2008; Niven et 
al., 2007]. Alternatively they may have evolved life history 
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systems, to reduce the need for relatively large and sophis-
ticated information processing systems, and hence mini-
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rable to large-brained animals [Miklos, 1998; Chittka and 
Niven, 2009] and ants are no exception, but more studies 
are needed to understand compensatory mechanisms for 
adapting to small body sizes and the energetic costs for 
maintaining a relatively large brain in small-bodied ani-
mals.
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Errata for:  Seid, M. A., Castillo, A. and Wcislo, W.T. 2011.  The allometry of brain 
miniaturization in ants. Brain, Behavior and Evolution DOI: 10.1159/000322530 (on-line 
first). 
 
Table 1: 
 
“Mycrocepurus smithii” is incorrect and should be “Mycocepurus smithii” 
 
“Mymricocrypta cf. ednaella” is incorrect and should be “Myrmicocrypta cf. ednaella” 
 
“Pogonomrymex badius” should be “Pogonomyrmex badius” 
 
“Trachymyrmex coniktzi (1)” should be “Trachymyrmex cornetzi (1)” 
 
“Tampinoma melanocephalum” is incorrect and should be “Tapinoma 
melanocephalum” 
 
For Megalomyrmex sp. 2,  the correct values for “Brain size range” should be 0.044–
0.057, not 0.044-0.051 

For Megalomyrmex sp. 2, the correct value for “Mean brain size” should be  0.051, not 
0.057 
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