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Abstract Two common strategies for successful foraging
are learning to associate specific sensory cues with patches
of prey (“associative learning”) and using set decision-
making rules to systematically scan for prey (“algorithmic
search”). We investigated whether an animal’s life history
affects which of these two foraging strategies it is likely to
use. Natterer’s bats (Myotis nattereri) have slow life-his-
tory traits and we predicted they would be more likely to
use associative learning. Common shrews (Sorex araneus)
have fast life-history traits and we predicted that they
would rely more heavily on routine-based search. Apart
from their marked differences in life-history traits, these
two mammals are similar in body size, brain weight, habi-
tat, and diet. We assessed foraging strategy, associative
learning ability, and retention time with a four-arm maze;
one arm contained a food reward and was marked with four
sensory stimuli. Bats and shrews differed significantly in
their foraging strategies. Most bats learned to associate the
sensory stimuli with the reward and remembered this asso-
ciation over time. Most shrews searched the maze using
consistent decision-making rules, but did not learn or
remember the association. We discuss these results in terms
of life-history traits and other key differences between these
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species. Our results suggest a link between an animal’s life-
history strategy and its use of associative learning.
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Introduction

Species vary greatly in their cognitive abilities. While some
animals are quick to learn and able to rapidly alter their
behavior in response to novel stimuli, others are more ste-
reotyped and are relatively locked into fixed patterns of
behavior (Sih et al. 2004). Why are some species cogni-
tively plastic while others respond slowly to novelty and
change?

Animals differ in the resources they allot to different
activities at different times. Life-history theory predicts that
evolutionary trade-offs govern such resource allocations,
and animals have evolved a continuum of strategies to best
cope with conflicting demands (Promislow and Harvey
1990). Animals with fast life-history strategies often have
high metabolic rates and short lifespans. They tend to
reproduce early, have many litters, and many young per lit-
ter. On the opposite extreme are animals with slow life-his-
tory strategies. They have lower metabolic rates, live
longer, and have fewer young later in life. Common life-
history trade-offs include growth versus survivorship,
fecundity versus survivorship, and early versus late repro-
duction (e.g., Bennet and Harvey 1988; Biro et al. 2006;
Maklakov et al. 2007).

Theoretical studies suggest that behavior can mediate
life-history trade-offs (Stamps 2007; Wolf et al. 2007), and
recent empirical studies have found a link between life-his-
tory strategies and behavioral characteristics (Careau et al.
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2009; Schiirch and Heg 2010; von Merten 2011). Careau
et al. (2009) investigated the exploratory behavior of 19
species of muroid rodents as a function of metabolic rate
and age of first reproduction. They found that species with
fast life-history traits (high metabolic rate and early first
reproduction) explore their environment superficially,
while species with slower life-history traits explore their
environment more thoroughly. There is mounting evidence
that behavioral traits such as boldness, aggression, and
exploratory behavior are also linked to life-history charac-
teristics (Biro and Stamps 2008; Stamps 2007; Wolf et al.
2007; von Merten 2011).

Here, we ask whether similar links can be found between
life history and learning ability. Does the ability to learn
associations reflect the slow-fast life-history continuum?
To what extent can life-history traits explain the variation
in learning and flexibility between species?

We hypothesize that animals with fast life-history traits
rely more heavily on simple, stereotyped behaviors such as
fixed decision-making rules. Slow-lived animals with long
lifespans may invest more heavily in future resource avail-
ability and thus reap long-term benefits of associative learn-
ing and memory (e.g., return to productive prey patches,
recognize profitable prey season after season). We exam-
ined this hypothesis by comparing the foraging strategies of
two species that are similar in size and diet, but lie on oppo-
site ends of the mammalian life-history spectrum: bats and
shrews.

Generally, body size is an excellent predictor of life-his-
tory strategy: the larger an organism, the more slowly it
lives and the longer its lifespan (Millar and Hickling 1991).
Bats are a notable exception. For small-bodied mammals,
bats have extraordinarily long lifespans (over 30 years in
some species (Barclay and Harder 2003), with a record of
41 years in a free-living Brandt’s bat (Podlutsky et al.
2005)). They also have a low reproductive rate (Barclay
and Harder 2003). Shrews are similar to bats in body size,
but in contrast they have high metabolic rates and produce
many offspring within a short time period (Churchfield
1990). Further, they have much shorter lifespans: Depend-
ing on the species, shrews live only 1 year (most shrews of
the genus Sorex, like our study species) or up to 3 or 4 years
(only a few of the larger-sized species; Churchfield 1990).

We investigated whether learning abilities and life-his-
tory strategies are associated by comparing learning rates in
a standardized foraging task in the Natterer’s bat, Myotis
nattereri, and the common shrew, Sorex araneus. These
species are sympatric over large areas of Europe. They have
similar body weights (approximately 8—10 g, own data) and
similar brain sizes (S. araneus: 205-216 mg (Fons et al.
1984); M. nattereri: mean 220 mg (Baron et al. 1996)).
Both feed mainly on insects and other small invertebrates,
which they locate in cluttered forest habitats (Churchfield
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1990; Siemers and Swift 2006). Despite their similarities,
the life histories of the two species differ strongly. S. araneus
live little more than a year and typically produce two or
three litters with an average of six pups per litter within this
year (Churchfield 1990). They have an extraordinarily high
resting metabolic rate of 6.1-8.3 ml O2/[g-h] (Kleiber
1961; Taylor 1998) and must feed every 2-3 h to avoid
starvation (Churchfield 1990).

In contrast, for small-bodied mammals, bats have
extraordinarily long lifespans. It is difficult to measure, but
mean longevity in bats ranges from 9 to 23 years (Barclay
and Harder 2003) with several records of over 30 years in
free-living individuals [Rhinolophus  ferrumequinum
(Corbet and Harris 1991); Plecotus auritus (Lehmann et al.
1992); M. lucifugus (Davis and Hitchcock 1995);
M. brandtii (Podlutsky et al. 2005)]. For M. nattereri, we
do not have data for all life-history parameters; when data
are missing, we give the name and data of other, similar-
sized bats of the same genus. M. nattereri can live more
than 20 years in the wild (Dietz et al. 2009). M. nattereri
give birth to a single pup per year (Swift 2001). They
search for food in one to two bouts per night (Siemers et al.
1999) and do not forage during the day (Smith and Racey
2005). The metabolic rate of M. nattereri has not been mea-
sured, but we expect it is approximately 2.4 ml O2/[g-h],
the resting metabolic rate of M. lucifugus, a similar-sized
bat in the same genus (Speakman and Thomas 2003). This
metabolic rate lies within the normal range for a mammal
of this size (Kleiber 1961). Considering their disparate life-
history traits, we have chosen the Common shrew and the
Natterer’s bat as representatives of extreme ends of the
slow-fast life-history continuum.

In addition to differences in life history, bats and shrews
differ socially and ecologically. Many bat species, includ-
ing Natterer’s bats, are social (Kerth 2008), while shrew
species of the genus Sorex are solitary (Rychlik 1998).
Sociality has been connected with cognitive abilities in a
variety of taxa (Pérez-Barberia et al. 2007). In addition, as
volant mammals, bats experience considerably less preda-
tion (Pomeroy 1990) and cover larger areas while foraging,
thus likely encountering more complex and variable habi-
tats than ground-dwelling shrews. We will examine the
possible influences of these differences on learning and life
history in detail the discussion.

We compared the learning abilities of bats and shrews
by measuring their ability to locate a food reward in a
four-arm crawling maze. Although bats typically fly to
locate prey, most bats, including Natterer’s, crawl and
even run well (Riskin et al. 2006); some bat species use
terrestrial locomotion in foraging (vampire bats: Schutt
and Simmons 2006; Altenbach 1979; New Zealand short-
tailed bats: Jones et al. 2003). In the discussion, we exam-
ine the implications of using a crawling maze for a species
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that naturally forages in flight. We concealed a reward at
the end of one of the arms of the maze; this arm was
clearly marked with stimuli from four sensory modalities.
The animals could find the reward in one of three ways:
random search, algorithmic search, or associative learn-
ing. We defined algorithmic searches as movement pat-
terns following a fixed decision-making rule, for example,
always turning clockwise or always turning counterclock-
wise. We predicted that short-lived, fast life-history strat-
egy shrews would solve the task using primarily random
or algorithmic searches, whereas the long-lived, slow life-
history strategy bats would learn to associate the stimuli
with the food reward. Furthermore, we expected that
memory for a successful foraging strategy would be stron-
ger in bats than in shrews.

Methods
Study species

We tested 9 common shrews, S. araneus, and 9 Natterer’s
bats, M. nattereri. All shrews were caught in the area sur-
rounding the Max Planck Institute for Ornithology in See-
wiesen, Germany, between June and October 2009 (license
issued by “Regierung von Oberbayern”: 55.1-8642-8-
2007). Seven bats were caught at Brunnen Mayer, Ger-
many, in September 2008 (license issued by “Untere
Landschaftsbehorde, Kreis Coesfeld”: 70 2-0085/0) and
kept at the Max Planck Institute for Ornithology in Seewie-
sen, Germany. Two bats were caught at the Zitadelle in
Berlin, Germany, in 2003 (license issued by “Senatsverwal-
tung fiir Stadtentwicklung des Landes Berlin”: OA-AS/G/
605) and kept at the University of Tiibingen, Germany.

Shrews were housed individually in terraria in a climate-
controlled room (16—-18°C, 60—70% humidity). The terraria
were furnished with soil and moss as litter; hay was pro-
vided as bedding material. On days when experiments were
not conducted, shrews were fed with 3 g mealworms and
4 ¢ minced beef heart daily. Water was available
ad libitum. (For feeding scheme on experimental days, see
Experimental design section below.)

The Seewiesen bats were housed together in an aviary,
the Tiibingen bats in a flight tent, both in climate-controlled
rooms (20-21°C, 65-75% humidity). On days when exper-
iments were not conducted, bats were offered mealworms
and water ad libitum. (For feeding scheme on experimental
days, see Experimental design section below.)

Bats and shrews were kept on an inverted light-dark
schedule (9 pm light on, 9 am light off). The majority of
experiments were conducted in Seewiesen. The two
Tiibingen bats were tested in Tiibingen under similar con-
ditions.

x|/

Fig. 1 The maze with start, acclimatization, and end boxes connected
by tubes. The rewarded end box (here on the right) was marked by
acoustic, visual, and olfactory stimuli presented from separate cylin-
drical containers; dummy containers were positioned in the other three
end boxes. The inner surface of the arm leading to the rewarded box
was lined with a small strip of plastic mesh to serve as a tactile or echo
stimulus; the other arms were lined with a small strip of plastic mesh
on their outer surfaces

Experimental setup

All experiments were conducted inside a separate climate-
controlled room (18-20°C, 60-70% humidity), dimly illu-
minated with a 25-W red light bulb. The experimental setup
consisted of a four-arm maze constructed from modified
transparent polypropylene storage containers (EMSA
GmbH, Germany; Fig. 1) surrounded by a wooden barrier
(100 x 100 cm, height 47 cm) to minimize external cues.
The central part of the maze consisted of a start box
(16.5 x 16.5 x 13 cm) containing an additional acclimati-
zation box (8 x 8 x 5.5 cm) to hold the animal until the
trial began. The acclimatization box was lifted remotely
with a pulley to initiate the trial. From each of the four sides
of the start box, a transparent tube (length 20 cm, inner
diameter 4.5 cm, GM GmbH, Germany) led to an end box
(13.5 x 10 x 9 cm). One of these end boxes contained four
stimuli and two mealworms as a food reward. For each
trial, the rewarded end box was determined using a random
number generator; trials were pseudo-randomized such that
the same end box was never rewarded twice in succession.

Sensory stimuli

The stimuli in the end box with the mealworms included
sound, a colored light, an odor, and tactile/echolocation
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cues. We offered stimuli from four sensory modalities to
minimize the effect of species’ differences in perception.
All four stimuli were presented simultaneously for the
duration of each trial.

For the acoustic cue, we synthesized a 10-ms frequency
sweep from 22 to 2 kHz (sampling rate 48 kHz; Audition,
Adobe Systems, USA). A portion of this stimulus is audible
to both the bats (Siemers and Schnitzler 2000) and shrews
(Konstantinov and Movchan 1985). We broadcast this stim-
ulus as a wav-file at the rate of one sweep per second
repeatedly for the duration of each trial using an MP3-
Player (SA 1100 512 MB, Philips, Netherlands).

We used a single green LED for the visual cue. Green
light can be perceived by both bats (Dietrich and Dodt
1970) and shrews (Sigmund 1985).

For the olfactory cue, we used an essential oil of vanilla
(Primavera Life GmbH, Germany) presented on a piece of
cotton wool. It has been demonstrated that both bats (Kolb
1961) and shrews (Churchfield 1980) can use olfaction dur-
ing foraging.

Acoustic, visual, and olfactory cues were each presented
from small cylindrical containers positioned at the rear wall
of the rewarded end box (Fig. 1). To prevent the animals
from using the presence of the cylindrical containers per se
as indicators of the food reward, we presented similar con-
tainers without the sensory stimuli at the rear wall of the
other three end boxes.

For tactile cues, we lined the first and last 1.5 cm of the
inner wall of the tube leading to the rewarded end box with
plastic mesh (4-mm? holes). Shrews have an acute sense of
touch (Anjum et al. 2006); Natterer’s bats likely also use
tactile information (Czech et al. 2008). In addition, Nat-
terer’s bats show high echolocation performance (Siemers
and Schnitzler 2004); as such, the mesh likely served as an
echolocation cue to them as well. Evidence suggests that
shrews can use call reverberations to glean information
about habitat type (Siemers et al. 2009), so it is possible
that the mesh also served as an echo cue to them. The first
and last 1.5 cm of the remaining three tubes were lined with
plastic mesh on the outside, so that the four tubes would
appear visually similar.

Experimental design

Before beginning our experiments, we allowed the animals
to explore the maze to acclimate to the novel setting. In
acclimatization trials, we placed mealworms at the end of
every arm and offered no sensory stimuli marking the
rewards. Initially, animals would try to escape or would not
move at all from the start box, but after initial experience
with the maze all animals responded by locating and con-
suming the mealworms. An animal was considered ready to
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begin experiments when it began to explore as soon as the
acclimatization box was lifted.

At the beginning of each trial, we placed the animal in
the acclimatization box in the center of the maze for 30s.
The box was transparent and porous, allowing the animals
to perceive sensory cues from the reward box. At the end of
the acclimatization period, we began the trial by lifting the
acclimatization box and releasing the animal into the start
box. A trial ended when the animal had either found and
consumed the food reward or after 15 min had elapsed. We
allowed 15-30 min to pass from the start of one trial to
the start of the next. We conducted 10 trials per day in two
5-trial blocks, one in the morning and one in the afternoon.

We conducted trials when the animals were motivated to
feed. To induce moderate levels of hunger in both species,
bats and shrews were fed modified versions of their natural
feeding regime. In nature, shrews of the genus Sorex feed
every 2-3 h day and night (Churchfield 1990). On the days
shrews were used in the experiments, they were fed 2 h
before the experiments began; they obtained all other food
during the experiments. Natterer’s bats do not forage during
the daytime (Smith and Racey 2005). On the days they
were tested, they obtained all food during the experiments.
Following testing each day, both bats and shrews were fed
to satiation. All animals fed readily in the maze, indicating
that these feeding regimes were sufficient for motivating
both species to forage.

All our study animals acquired a consistent foraging
strategy within 1 to 3 days, a period we termed the initial
testing phase. An animal was judged to have acquired a
consistent strategy when it used the same strategy to find
the food reward in 7 of 10 consecutive trials. Animals that
investigated the arms systematically in a clockwise or
counterclockwise sequence were said to exhibit “algorith-
mic search”. Those that chose the arm with food directly
from the start box, without investigating other arms first,
were said to exhibit “cue-directed search”. Trials in which
an animal used neither algorithmic nor cue-directed search
were classified as “random search”. Once the acquisition
criterion was reached, we conducted a single trial without a
food reward. All animals persisted with their strategy in the
absence of the food reward, indicating that they were not
locating the reward on the basis of cues emanating from the
reward per se.

The initial testing phase was followed by a one-week
and a one-month retention test, 7 and 28 days after reaching
the criterion, respectively. Each retention test lasted 1 day
with a maximum of 10 trials. Due to the differences in
experimental exposure after the initial trials, two bats and
one shrew could not be used in the retention trials. In all
phases, we only scored trials in which the animal found and
consumed the food reward.
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Analysis

All experiments were recorded on miniDV tapes with a
camera mounted directly above the maze (recorder: DCR-
TRV 80E, Sony, Japan; camera: WAT-902H2 Ultimate
with 1.4/3.5 mm objective, Watec, Japan). Tapes were used
to verify notes taken by the experimenter seated next to the
maze.

We assessed foraging efficiency by calculating a simpli-
fied path length, the distance an animal covered from the
onset of the experiment until it discovered the food. We
assigned a value of 2 each time an animal moved less than
halfway down an arm, and a value of 4 each time an animal
moved more than halfway down an arm. We calculated spe-
cies means on the first ten trials of the initial testing phase
and on the ten one-week and the ten one-month retention
trials. We compared the change in the path length score
over time within species and the difference in the path
length score between species.

We evaluated the differences in the animals’ responses to
the maze by comparing the number of trials the two species
required to establish their first strategy and which strategy
this was. We then evaluated whether animals retained their
original strategy over time, acquired a new one, or reverted
to random search.

We measured the ability to associate the sensory stimuli
with a food reward by comparing the number of bats and
shrews that learned to use a strictly cue-directed search
strategy.

All statistics were calculated using SPSS 16.0 (IBM,
USA), except for the Fisher’s exact test on associative learn-
ing, which was calculated using Systat 12.02 (Systat Soft-
ware, Inc., USA). As our data were not normally distributed
(Kolmogorov-Smirnov test, p < 0.05), we used non-paramet-
ric tests. When necessary, we corrected the p values of post
hoc tests applying the Dunn-Sidak correction for multiple
testing, using the formula p’ = 1 — (1 — p)¥, where p' is the
corrected p value and k is the number of tests used.

Results

Both bats and shrews showed a reduction in the path length
over time (Fig. 2; Friedman ANOVA; bats: }52(2) =5.852,
p =0.051; shrews: %%(2) = 7.000, p = 0.030). Most animals
showed a reduction in the path length within the initial test-
ing phase. However, we could not directly test this effect
because some individuals demonstrated a consistent strat-
egy in fewer than 10 trials (as described above, we stopped
the initial phase once the animal had acquired a consistent
foraging strategy). We thus compared the reduction in path
length from up to the first 10 trials of the initial testing
phase to the one-week and the one-month retention phase.
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Fig. 2 Simplified path length (mean + SEM) required for bats and
shrews to find the reward in the three stages of the experiment. For sta-
tistical details see text

Both bats and shrews showed a significant reduction in
path length from the beginning of the initial testing to the
one-week retention (Fig. 2; post hoc Wilcoxon signed-rank
test, p values corrected after Dunn-ﬁidék; initial testing ver-
sus one-week retention: bats: 7=1.0, p' = 0.046; shrews:
T=1.0, p’ =0.016). For bats but not shrews, this reduction
continued through the one-month retention (initial testing vs.
one-month retention: bats: T=1.0, p'=0.046; shrews:
T=14.0, p’' =0.641). There were no significant differences
between bats and shrews for initial testing phase and one-
week retention trial path lengths (Fig. 2; Mann-Whitney test,
p values corrected for multiple testing using Dunn-Sidék; ini-
tial testing: U=27.0, p’'=1.000; one-week retention:
U=22.5,p' =0.909). In the one-month retention trials, how-
ever, path lengths of the bats were significantly shorter than
those of the shrews (Fig. 2; U=17.5, p' =0.044).

On average, bats and shrews showed no difference in the
number of trials needed to acquire their first consistent
strategy (Fig.3; Wilcoxon rank-sum test; Ws =67,
p =0.107). All individuals acquired a strategy during the
initial testing phase (Table 1).

The majority of bats (6 of 9) and shrews (6 of 9) first
used a combination of algorithmic and cue-directed search
to find the reward. The majority of shrews retained this
mixed strategy in both the one-week (8 of 8) and one-
month (7 of 8) retention tests. The only shrew that learned
to use a strictly cue-directed search strategy in the initial
testing phase switched back to algorithmic search in the
retention phase trials. Most bats, in contrast, used algorithmic
search as an interim strategy and then switched to cue-
directed search. Those bats that had learned to use cue-
directed search in the initial testing phase (2 of 9) retained
this strategy in both the one-week and the one-month reten-
tion. Bats that had not acquired cue-directed search in the
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n.s

254

151

104

Number of trials to strategy

Bats (n=9) Shrews (n=9)

Fig. 3 Number of trials required for bats and shrews to acquire their
first consistent strategy in the four-arm maze. Boxes show 25-75%
range of data, whiskers 10-90% range of data. Median is shown as
dashed line, mean as dotted line. For statistical details see text

Table 1 Number of trials required for each individual to acquire its
first consistent foraging strategy (either algorithmic or cue-directed
search) and the number of trials necessary to acquire a cue-directed
search

Shrews Trialstoa Trials to Bats Trialstoa Trials to
consistent  associative consistent  associative
strategy learning strategy learning

1 n/a 1 8 17

2 - 2 8 26

3 22 22 3 8 n/a

4 9 - 4 8 18

5 11 - 5 8 n/a

6 26 - 6 12 -

7 15 - 7 7 -

8 19 - 8 13 13

9 13 - 9 26 26

Individuals that never learned the association between the food reward
and the sensory stimuli are identified by a dash (-). Individuals
assigned ‘“n/a” could not be included in the final analysis because of the
inconsistencies in the testing protocol

initial testing phase increased their cue-directed perfor-
mance and decreased their algorithmic search strategy over
both the one-week (cue-directed search in 4 of 7) and one-
month (5 of 7) retention tests.

Bats and shrews used the same proportion of random
search trials: initial testing phase: mean (SEM) proportion of
random trials used by bats =0.12 £ 0.04; mean(shrews) =
0.16 &+ 0.03; Mann-Whitney test: U = 19.0, p = 0.303; one-
week retention: mean(bats) = 0.07 &= 0.03; mean(shrews) =
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Fig. 4 Ratio (mean & SEM) of cue-directed to algorithmic search at
the three stages of the experiment. For statistical details see text

0.05 £ 0.03; U =24.5, p = 0.8378; one-month retention: mean
(bats) = 0.06 &= 0.03; mean(shrews) =0.15 +0.04; U=14.5,
p = 0.159. Thus, we omitted random searches from further
analysis and calculated a ratio of the number of trials exhib-
iting cue-directed search to the number of trials exhibiting
algorithmic search. Scores above 1 indicate more cue-
directed than algorithmic search; scores below 1 indicate
more algorithmic than cue-directed search. Shrews scored
near 1 in all three testing periods (Fig. 4), reflecting a con-
sistent mixture of algorithmic and cue-directed search. The
bats scored above 1 on all three test periods (Fig. 4), indi-
cating more cue-directed than algorithmic search. Their use
of cue-directed search increased over time, even during the
retention periods. The higher cue-directed performance of
bats compared with shrews was not significant in the initial
testing phase nor in the one-week retention tests (Fig. 4;
initial testing phase: U =22.5, p = 0.556; one-week reten-
tion: U =25.0, p = 0.756); but it was significantly higher in
the one-month retention tests (U =7.5, p = 0.015).

As an overall result, both bats and shrews were able to
use both strategies, algorithmic and cue-directed search
(Table 1). However, significantly more bats than shrews
learned to use strictly cue-directed search (Fig. 5, Fisher’s
exact test (two-tailed): p = 0.04).

Discussion

Our study supports the hypothesis that life-history traits can
predict learning propensity. Fast-lived shrews improved
their foraging efficiency by switching from random to
algorithmic search to find prey in a standardized maze.
Similar-sized but slow-lived bats also shifted from random
to algorithmic search, but subsequently switched to associa-
tive learning, thus further increasing their foraging



Anim Cogn

I cues leamed
8| [ cues not leamed

Number of individuals

Bats (n=7)

Shrews (n=8)

Fig. 5 Number of individuals that learned to associate the cues with
the food reward, either during initial phase or during one of the reten-
tion phases. For statistical details see text

efficiency. In addition, bats showed increased retention
ability compared with shrews. To our knowledge, this is the
first evidence linking life-history strategies with associative
learning and memory.

Other studies have found similar high rates of associa-
tive learning and memory in bats. Siemers (2001) showed
that Natterer’s bats, the species used in this study, can learn
to associate a novel object with a profitable prey patch. He
suggests that because the direct detection of prey by echo-
location is often hindered by vegetation clutter, these bats
must rely on indirect cues such as habitat structure to signal
prey abundance. Page and Ryan (2005) found that fringe-
lipped bats quickly learn novel associations between frog
calls and prey quality. Ratcliffe and ter Hofstede (2005)
show that fruit bats can readily associate novel chemical
cues with prey. Flower bats can associate echo, scent, and
visual cues with nectar rewards in cue-directed search
(Carter et al. 2010; Thiele and Winter 2005; von Helversen
and von Helversen 1999, 2003; Winter et al. 2005). Horse-
shoe bats can learn to discern the profitability of prey by
means of different artificial echo cues (Koselj et al. 2011).
In addition, there is evidence that bats can retain learned
behavior for long periods and over hibernation (Ruczynski
and Siemers 2010).

In contrast, few studies document learning and memory
in shrews. Those that have investigated learning show that
shrews forage better when they use algorithmic search
(Pierce 1987) and spatial learning (K&hler 1993; Punzo and
Chavez 2003). To our knowledge, ours is the first study to
investigate cue-directed, associative learning and memory
in shrews.

One drawback of our study is that while shrews were
tested in their natural foraging mode (walking/crawling),
bats were not (flight). One way to overcome this difficulty

is to use a different arena for each species, one that allows
for flight for the bat, crawling for the shrews. Using differ-
ent arenas invites its own potential problems, however.
Differences in the performance could be attributed to the
differences in arena type, difference in spatial scale, etc.
While each approach has its drawbacks, our strategy was to
keep as much constant in our testing paradigms as we
could, to allow for better comparison of the two species.
Many bat species are adept at maneuvering on the ground
(Riskin et al. 2006), and we were careful when designing
our maze to ensure that both Natterer’s bats and common
shrews could move through the maze easily and would
readily find and consume mealworm prey. However, it is
possible that bats did not perform as well as in the crawling
maze as they would have in a more natural setting. While
testing animals in artificial conditions is not ideal, we argue
that, if anything, our results underestimate the differences in
learning we find between the species for the following rea-
son: Of the two strategies, algorithmic search and associa-
tive learning, likely the more sophisticated is associative
learning. According to “constraints of learning” theory, ani-
mals perform to the best of their cognitive abilities in the
natural conditions that call for them (Shettleworth 1972).
The fact that we found bats outperforming shrews even when
the situation was less natural for the bats speaks to the bats’
cognitive abilities. We would expect that, given a task closer
to what they experience in nature (one that requires flight
rather than crawling), we would see yet better cognitive per-
formance in the bats. In effect, because of the foreignness of
the task for the bats, we feel that our current test is a conser-
vative measure of bat foraging cognitive ability.

Ideally, to study the effect of life-history traits on learn-
ing and memory, we must conduct comparative studies on
species that differ only in their life-history traits. We chose
M. nattereri and S. araneus because they represent opposite
extremes on the life-history continuum while sharing many
key traits such as diet, habitat characteristics, body size and
brain size. In addition to life-history strategy, however,
other factors differ between bats and shrews. Two of the
most important are sociality and flight.

Most bat species for which we have data are social. This
is well known for the European Myotis, including our study
species, M. nattereri (Kerth 2008). M. nattereri typically
lives in stable colonies of 20-50 individuals (Dietz et al.
2009). In contrast, shrews of the genus Sorex are generally
solitary (Rychlik 1998). In a wide range of taxa, social spe-
cies show higher learning performance on foraging and
spatial learning than solitary ones (Costanzo et al. 2009;
Dukas and Real 1991). In carnivores, ungulates, primates,
and some insectivores, sociality has been associated with
higher cognitive abilities and a larger brain (Pérez-Barberfa
and Gordon 2005; Dunbar 1992; Dunbar and Bever 1998).
In bats, there is a positive relationship between social group
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size and neocortex size (Barton and Dunbar 1997). How-
ever, despite being social, bats have a comparatively simple
cortex structure (Baron etal. 1996) and do not have
enlarged brains compared with similar-sized mammals,
including shrews (Fons et al. 1984). Thus, the higher level
of sociality of bats does not seem to be reflected in their
brain size. Whether their sociality has an influence on their
learning cannot be answered with our study.

A second and perhaps more fundamental distinction
between bats and shrews is flight. The ability to fly has sev-
eral major consequences for the ecology and life history of
bats. Flight allows bats to be highly mobile and forage over
much broader spatial scales than ground-dwelling shrews.
Thus, the forest habitat in which both study species forage
likely appears patchier and more complex to bats than to
shrews. Bats may benefit from learning and remembering
cues associated with profitable prey patches in their large
and complex three-dimensional foraging environment.
Shrews, restricted to the less complex two dimensions of the
ground, may have better foraging success using systematic
search. There is evidence that mobile species and species
confronted with more complex habitats are better learners
than sedentary species or species foraging in less complex
environments (Micheli 1997; Potting etal. 1997; Haupt
et al. 2010). Our results are consistent with these findings.

The evolution of flight had a second crucial consequence
on the ecology of bats: the ability to fly is associated with a
decrease in predation (Holmes and Austad 1994; Pomeroy
1990). Flight may both expose bats to fewer types of preda-
tors and allow them to escape better (Barclay and Harder
2003; Fenton et al. 1994; Driessens and Siemers 2010).
Nocturnality further shelters bats from predation (Speak-
man 1995). While quantifying bat predation events is
extremely difficult, Speakman (1991) uses known parame-
ters and indeed estimates very low predation risk for noc-
turnally foraging bats. While both bats and shrews are
active at night, the high metabolic rates of shrews necessi-
tate foraging during the day as well (Churchfield 1990); for
this reason as well as their lack of flight, shrews likely
experience increased predation compared with bats.

Animals suffering from high predation pressure may be
forced to be more cautious and invest more into anti-preda-
tor behavior than into learning. In within-species experi-
ments in fish, it has been shown that populations facing
lower predation pressure exhibit higher learning ability
than populations under high predation pressure (Brown
2005; Brydges et al. 2008). Our results are consistent with
these studies.

A decrease in predation pressure, one consequence of
the ability to fly, in turn has consequences on the life his-
tory of bats. By facing lower predation pressures, volant
mammals have a higher adult survival rate than ground-
dwelling mammals of the same size (Holmes and Austad
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1994; Austad and Fischer 1991; Pomeroy 1990). Species
with longer life expectancies can afford to reproduce later
in life and invest more into growth (Harvey and Zammuto
1985), thus exhibiting typical slow life-history traits. In
contrast, animals like shrews with riskier life styles (i.e.,
animals with a high “hazard factor” (Edney and Gill 1968))
are under selection to reproduce quickly and die early. It is
possible that long-lived bats benefit from learning and
retaining information about their environment that
improves not only current but future foraging success.
Thus, we argue that it may not be flight itself, nor the result-
ing higher mobility, that has selected for improved learning
abilities in bats compared with shrews, but rather the impli-
cations of flight on life-history strategies. As outlined
above, the ability to fly, lower predation pressure, increased
longevity, and slow life history are all tightly associated.
We suggest that this suite of evolutionarily interlinked
characters fostered increased learning in bats.

Our data demonstrate that slow-paced bats have stronger
associative learning and better memory retention than their
fast-paced counterparts, shrews. We suggest that these
differences in learning ability relate to the different life-his-
tory strategies of our two study species. Our conclusions are
based on data from two species from the extreme ends of the
slow-fast life-history continuum. To further test the effect of
life-history traits on learning, memory, and search strategy,
it will be necessary to investigate multiple species across a
continuum of life-history strategies, from slow to fast.
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