Early Paleogene magmatism in the northern Andes: Insights on the effects of Oceanic Plateau–continent convergence

Germán Bayona a,⁎, Agustín Cardona a,b, Carlos Jaramillo a,c, Andrés Mora d, Camilo Montes a,e, Víctor Valencia f, Carolina Ayala a, Omar Montenegro a, Mauricio Ibañez-Mejía g

a Corporación Geológica ARES, Calle 44A N. 53-96, Bogotá, Colombia
b Universidad Nacional de Colombia, Medellín, Colombia
c Smithsonian Tropical Research Institute, Ciudad de Panamá, Panamá
d Instituto Colombiano del Petróleo, Bucaramanga, Colombia
e Universidad de los Andes, Bogotá, Colombia
f School of Earth and Environmental Sciences, Washington State University, Pullman, WA 99164-2812, USA
g University of Arizona, Department of Geosciences, The University of Arizona, Tucson, AZ 85721, USA

A R T I C L E I N F O

Article history:
Received 13 June 2011
Received in revised form 3 March 2012
Accepted 5 March 2012
Available online xxxx
Editor: T.M. Harrison

Keywords:
Paleogene magmatism northern Andes subduction intraplate magmatism

A B S T R A C T

Recognition of magmatic events in polyphase arc–continent collision margin is critical for proper tectonic reconstructions that trace the short and changing nature of the configuration of the continental margin. Additionally, the recognition of the origin of detrital volcanic zircons within continental basins becomes a challenge if only distant oceanic and continental magmatic arcs are considered as the only possible source. In this study we report U/Pb zircon ages in isolated plutons that support an early Paleogene magmatic arc that extended ca 700 km along the northern Andean continental margin. Additional detrital zircon Paleogene ages (45–65 Ma), from Paleocene–lower Eocene continental sandstones and volcaniclastic rocks in 19 localities from Colombian and Venezuela Andean basins, indicate that volcanic detritus were supplied from a magmatic arc striking parallel to the subduction zone and also show the existence of intraplate magmatism extending more than 400 km inland. The wide distribution of this Early Paleogene magmatism along the northern South America margin is related to subduction of the buoyant Caribbean plate: the relative short period of magmatism (~10 myr) and sudden stop in early middle Eocene time may be related to the difficulty of the thick plateau to subduct and the relative strike–slip movement of the South America and Caribbean plates since middle Eocene due to northward migration of those plates.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Identifying short periods of magmatic activity in long-term orogens is a difficult task because their signature is often dilute and barely detectable (Garzanti et al., 2007). This magmatism, however, is very important for a proper reconstruction of the short duration of arc–continent collisions (Dewey, 2005) and the evolution of accretionary orogens, which may experience multiple variations in the subduction parameters during short time intervals (Cawood et al., 2009). Volcanic zircons within a synorogenic succession is a powerful tool for tracking hidden magmatic events, improving stratigraphic correlation and tracing details on the tectonic evolution of convergent margins that may be hidden by erosion or over-imposed tectonic events (Garzanti et al., 2007; Malagó et al., 2011). This approach links zircons accumulated in sedimentary sequences adjacent to the orogen with magmatic activity within the orogen itself (e.g., DeCelles et al., 2007; Dickinson and Gehrels, 2009; Fedo et al., 2003; Nelson, 2001).

The northern Andes is the result of complex processes of collision among continental plate margin, oceanic arcs, and the buoyant plateau-like Caribbean plate with its associated oceanic arcs (e.g., Cediel et al., 2003; Cooper et al., 1995; Kennan and Pindell, 2008; Kerr and Tarney, 2005; Kerr et al., 1997; Pindell and Kennan, 2009; Taboada et al., 2000). This long-term process of collision and subduction produced several phases of magmatism and deformation affecting both the margin (e.g., Cardona et al., 2011; Villagómez et al., 2011) and intraplate settings (e.g., Bayona et al., 2011; Cortés et al., 2005, 2006; Taboada et al., 2000). Discriminating the timing and spatial distribution of the different tectono-magmatic episodes of northern Andes evolution is critical to a proper understanding of the upper plate effects of oceanic–continent collisions and the faith on the subduction of oceanic plateaus (Cloos, 1993; Gutscher et al., 2000; Mann and Taira, 2004; Van Hunen et al., 2004).
Recently reported detrital zircons ages in Paleocene successions of the northern Andes (Cardona et al., 2011; Saylor et al., 2011) and Paleocene volcanic rocks in intraplate settings (Bayona et al., 2010, 2011; Jaramillo et al., 2010) might have two possible sources (Fig. 1; see geological settings for details). One possible source is a continental magmatic arc that has been only detected punctually in the northernmost segment of the Andes and farther south in the Ecuador Andes (Macuchi and Sacapalca arcs; Jaillard et al., 2009; Vallejo et al., 2009) (Fig. 1). The other possible source of volcanic fragments is from oceanic arcs that developed in the trailing and leading edges of the Caribbean oceanic plate (Fig. 1). This study presents new constraints on the spatial and temporal extensions of Paleogene plutonic rocks along the continental margin of the northern Andes and the spatial and temporal records of detrital volcanic zircons in the Paleocene–middle Eocene synorogenic clastic wedge. The temporal and spatial distributions of magmatic events documented in this study allow tracing the effects of the collision and subduction of a buoyant oceanic plate with a continental margin.

2. Geologic setting

2.1. Late Cretaceous–Paleogene magmatic arcs

Previous studies in the northernmost Andes have reported evidence of Late Cretaceous–early Paleogene subduction and magmatic activity along the margin (Aspden et al., 1987; Jaillard et al., 2009; Pindell et al., 2005; Spikings et al., 2005; Vallejo et al., 2009; Villagómez et al., 2011). Widespread Late Cretaceous magmatic continental rocks have been documented in U–Pb zircon geochronology along the northern segment of the Central Cordillera (Antioqueño Batholith in Fig. 1); this magmatism has been associated either to the subduction of the Pacific–related Farallones plate or an older Proto Caribbean plate (Aspden et al., 1987; Ibáñez-Mejía et al., 2007; Leal-Mejía et al., 2010; Ordoñez-Carmona et al., 2008; Pindell and Kennan, 2009; Restrepo-Moreno et al., 2009a; Restrepo-Pace et al., 2004; Villagómez et al., 2011). Its long-term Cenozoic exhumation has exposed the plutonic levels of this magmatism (Restrepo-Moreno et al., 2009a,b). In contrast, lower Paleogene intrusive rocks in the Central Cordillera are more scattered and tectonic implication remains scarcely known (Aspden et al., 1987; Leal-Mejía et al., 2010; Ordoñez, 2001; Ordoñez-Carmona and Pimentel, 2001; Ordoñez-Carmona et al., 2011). These bodies intrude older Mesozoic plutonic bodies and are followed by magmatic gap (Wadge and Burke, 1983), and then by a well-defined Miocene to recent magmatic belt due to present subduction of the Nazca Plate (Cediel et al., 2003; Taboada et al., 2000).

Paleocene–early Eocene magmatism events have been reported farther north within the Santa Marta Massif cutting both continental and oceanic basement rocks (Cardona et al., 2011) and in a small pluton in the Guajira peninsula that is intruding accreted oceanic basement rocks (MacDonald and Opdyke, 1972) (Fig. 2a). Cardona et al. (2011) recognize an older 63–65 Ma magmatism related to the Caribbean arc–continent collisional phase and the subsequent 60–50 Ma installation of a subduction setting. However, the southward extension of this magmatic event, its short-term expression and its continental scale meaning is still scarcely discussed.

Contemporaneous Paleocene–Eocene magmatic activity is also recorded in the leading and trailing edge of the Caribbean plate. The leading edge has begun a major Late Cretaceous time-transgressive interaction with the northern margin of Colombia and Venezuela.
Horton et al. (2010b)

B) Sections in northern Colombia-western Venezuela basins

C) Sections in the Eastern Cordillera of Colombia

[Diagram showing geological sections and stratigraphic information]
Sections in the Eastern Cordillera of Colombia

LEGEND

- Incomplete section
- Disconformity
- U/Pb Sample
- U/Pb Sample with 45-65 Ma Zircons
- Sample code
- Calculated maximum age of deposition (Only if n ≥ 3)

- Carbonates
- Shallow marine
- Mudstone
- Continental, marginal
- Mudstone Marine
- Interval with coal seams
- Very fine to coarse-grained sandstone
- Conglomeratic sandstones and conglomerates

- Sections in northern Colombia-western Venezuela basins

- Western Domain Axial Domain Eastern Domain
- Western axial eastern axial eastern axial
- Medieval Hoyn Alluvial fans
- Upper Hoyon Middle Hoyon Lower Hoyon Seca Seca San Juan de Río Seco
- Coasts Coastal plains to Fluvial plains
- Coastal Plains to Fluvial Plains Fluvial plains Fluvial plains Fluvial plains Fluvial plains

- Datum
- Scale
- 0 100 300 500 1000 Meters

- Sample codes and calculated ages

Table 1
Intrusive rocks in the Central Cordillera with 45–65 Ma U–Pb zircon ages. U–Pb zircons ages reported in the Santa Marta batholith are indicated below for reference.

<table>
<thead>
<tr>
<th>Sample coordinates</th>
<th>Sample information</th>
<th>Number of zircons</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latitude Longitude Locality</td>
<td>Sample ID</td>
<td>Unit</td>
<td>Rock name</td>
</tr>
<tr>
<td>6.5399</td>
<td>74.9114 G</td>
<td>GR-B-01</td>
<td>Tonalite</td>
</tr>
<tr>
<td>6.4754</td>
<td>75.0722 E</td>
<td>HLM-A-ER-001</td>
<td>Tonalite</td>
</tr>
<tr>
<td>6.5345</td>
<td>74.9168 E</td>
<td>HLM-A-7-029</td>
<td>Tonalite</td>
</tr>
<tr>
<td>5.7666</td>
<td>73.3333 D</td>
<td>BSS-5</td>
<td>Tonalite</td>
</tr>
<tr>
<td>5.1738</td>
<td>74.9736 C</td>
<td>GCC-011</td>
<td>Stock of Sonson</td>
</tr>
<tr>
<td>5.0341</td>
<td>74.4053 B</td>
<td>GCC-15</td>
<td>Tonalite</td>
</tr>
<tr>
<td>3–3.5</td>
<td>75.6 A</td>
<td>Ordoñez1</td>
<td>Tonalite</td>
</tr>
<tr>
<td>3–3.5</td>
<td>75.6 A</td>
<td>Ordoñez2</td>
<td>Tonalite</td>
</tr>
</tbody>
</table>

Santa Marta batholith ages (data from Cardona et al., 2011; Lugo and Mann, 1995), as part of a single Great Caribbean oceanic arc (Burke, 1988) or as multiple oceanic arcs (Wright and Wyld, 2011). Paleogene arc related magmatism within the Great Caribbean Arc has been reported in different granitoid units from the Greater and Leeward Antilles (Lidiak and Jolly, 1996). Within the trailing edge of the Caribbean plate, the Central American Arc has and arc related magmatic activity that began by ca. 70 Ma and was built over a Caribbean oceanic plateau-like substrate (Buchs et al., 2011, 2012; Xie et al., 2010). Zircons supplied from basement rocks in the Guyana craton have Neoproterozoic ages (650–600 Ma) and populations older than 1300 Ma.

Three sediment source areas have been proposed to explain the changes of Paleocene–middle Eocene sandstone composition from quartzarenite, to subarkosic, to litharenite (Bayona et al., 2008). These source areas are: (1) the Central Cordillera and Santa Marta Massif, composed of metamorphic and intrusive rocks and <2-km-thick Cretaceous sedimentary cover (Bayona et al., 2010; Gómez et al., 2003, 2005b); (2) intrabasinal uplifts that episodically expose Cretaceous sedimentary cover of the Eastern Cordillera (Bayona et al., 2008; Parra et al., 2012); and sedimentary cover, metamorphic and igneous basement of the Guyana shield that mostly influenced the easternmost sections (e.g., Alto, 1972; Gómez et al., 2005a).

U–Pb detrital zircon geochronology in clastic sequences in the northern Andes has been used to distinguish major source areas (Ayala Calvo, 2009; Ayala Calvo et al., 2009; Bande et al., 2012; Bayona et al., 2010, 2011; Cardona et al., 2009, 2011; Horton et al., 2010a,b; Nie et al., 2010, 2012; Saylor et al., 2011, 2012; Xie et al., 2010). Zircons supplied from basement rocks of the Central Cordillera–Santa Marta Massif have dominant Permo-Triassic and Mesozoic ages (65–300 Ma). Zircons supplied from basement rocks in the Eastern Cordillera and Santander Massifs have dominantly ranging from 300 to 1300 Ma. Zircons aged 45–65 Ma ages have been dated by the K/Ar method (Aspden et al., 1987). Results have yield 55–57 Ma ages that probably reflect their cooling below 450 °C–250 °C (McDougall and Harrison, 1999). Other four magmatic bodies from the Central Cordillera (localities A, D, E and F) have been also previously dated by the same methods. Their U–Pb ages and geological distribution are presented in Table 1 and Fig. 2.

In the clastic wedge, the 19 localities indicated in Figs. 2 and 3 include U–Pb detrital zircon geochronology data that are either already...
Published or are in process of publication or are presented in this study. Fig. 3 shows the stratigraphic position of all the geochronological samples for each section, but only samples with detrital zircons population of 45–65 Ma were selected for this study (Figs. 2 and 3).

Sample preparation for separation of zircons was done using standard procedures, which include mechanical crushing, fragmentation, pulverization and manual sieving with disposal 400 μm sieves. This fraction was concentrated in the water table followed by magnetic separation with the Frantz isodynamic and finally the non-magnetic fraction was separated using heavy liquids (methylene iodide, 3.30–3.33 g/cm³) in order to get highly pure zircon concentrates.

U–Pb geochronology of zircon single grains was conducted by laser-ablation–multicollector inductively coupled plasma–mass spectrometry at the University of Arizona Laserchron Center following the method of Gehrels et al. (2006, 2008) at Washington State University following the method of Chang et al. (2006). Unknowns and standard zircons were mounted in the central half of the mount area, to reduce possible fractionation effects. Detrital zircon grains to be analyzed were selected randomly from all of the zircons from each sample. For magmatic zircon tips and cores were selected for analysis, in order to check for the younger magmatic crystallization age and inherited domains. In detrital sample cores of grains were preferred to avoid possible thin metamorphic overgrowth. At the Arizona Laserchron zircon crystals were analyzed in polished epoxy grain mounts with a Micromass Isoprobe multicollector ICP-MS equipped with nine Faraday collectors, an axial Daly collector, and four ion-counting channels. The isotope is equipped with an ArF excimer laser ablation system, which has an emission wavelength of 193 nm. The collector configuration allows measurement of 204Pb in the ion-counting channel while 206Pb, 207Pb, 208Pb, 232Th and 238U were simultaneously measured with Faraday detectors. All analyses were conducted in static mode with a laser beam diameter of 35–50 diameter, operated with an output energy of ~32 mJ (at 23 kV) and a pulse rate of 9 Hz. Each analysis consisted of a short blank analysis followed by 300 sweeps through masses 204, 206, 207, 208, 232, 235, and 238, taking approximately 35 s.

Weight average and concordia age calculations as well as detrital zircon histograms were plotted using Isoplot 3 (Ludwig, 2007) and Arizona Laserchron Excel macro age pick program. For the Paleogene ages we used 238U/206Pb age, as these ages are more appropriate for zircons with ages younger then ca. 900 Ma. Tera-Wasserburg diagrams were tested to review the potential existence of Pb loss or common Pb. All errors of the U–Pb ages are given at 1-sigma level. Maximum depositional ages using early Paleogene detrital zircons were calculated for each sample with at least three detrital zircons. Raw data are presented in Appendix 1.

4. Results

4.1. U/Pb geochronology in granitoids

We have select samples from two granitoid bodies in the Central Cordillera of Colombia (Manizales and Hatillo Stocks). Samples are mainly hornblende-biotite granodiorites that intrude Triassic s-type granitoids and greenschist rocks. Zircon tips from the Manizales Stock yield a weight average age of 59.8 ± 0.7 Ma (MSWD = 1.2), whereas the Hatillo Stock yields an age of 54.6 ± 0.7 Ma (MSWD = 1.9) (Table 1); these ages are related to magmatic crystallization. All their U/Th ratios are below 12, which are characteristic of magmatic zircons (Rubatto, 2002) (Fig. 4).

We considered that published K/Ar ages from these stocks are relatively close to their magmatic crystallization as seen by the

Fig. 4. Concordia diagrams from the Hatillo and Manizales plutonic rocks. See Appendix 1 for raw data.
Table 2

<table>
<thead>
<tr>
<th>Sample coordinates</th>
<th>Sample information</th>
<th>Number of zircons</th>
<th>Maximum depositional ages</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latitude</td>
<td>Longitude</td>
<td>Locality</td>
<td>Unit</td>
<td>Palynological age</td>
</tr>
<tr>
<td>Southern Colombia sedimentary rocks: (localities 1 to 12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.727</td>
<td>−7.0523</td>
<td>12a</td>
<td>Cuervos Fm.</td>
<td>Paleocene–Eocene boundary</td>
</tr>
<tr>
<td>4.906</td>
<td>−7.096</td>
<td>40</td>
<td>Cuervos Fm.</td>
<td>Middle Paleocene</td>
</tr>
<tr>
<td>5.0232</td>
<td>−7.8122</td>
<td>11</td>
<td>Lower Paccho Fm.</td>
<td>Early Eocene</td>
</tr>
<tr>
<td>5.0232</td>
<td>−7.8122</td>
<td>11</td>
<td>Lower Paccho Fm.</td>
<td>Early Eocene</td>
</tr>
<tr>
<td>5.0232</td>
<td>−7.8122</td>
<td>11</td>
<td>Upper Soca Fm.</td>
<td>Late Paleocene–Early Eocene</td>
</tr>
<tr>
<td>5.0232</td>
<td>−7.8122</td>
<td>11</td>
<td>Upper Soca Fm.</td>
<td>Late Paleocene–Early Eocene</td>
</tr>
<tr>
<td>5.089</td>
<td>−7.7464</td>
<td>11</td>
<td>Upper Soca Fm.</td>
<td>Late Paleocene–Early Eocene</td>
</tr>
<tr>
<td>5.587</td>
<td>−7.023</td>
<td>10</td>
<td>PEC-Teo-BM2004</td>
<td>Conservation Fm.</td>
</tr>
<tr>
<td>5.214</td>
<td>−7.424</td>
<td>9</td>
<td>UNIB-Emb-112-110</td>
<td>Upper Soca Fm.</td>
</tr>
<tr>
<td>5.214</td>
<td>−7.378</td>
<td>7b</td>
<td>EHE-Ta-GP27</td>
<td>Bogota Fm.</td>
</tr>
<tr>
<td>5.045</td>
<td>−7.3003</td>
<td>6</td>
<td>MS-1</td>
<td>Bogota Fm.</td>
</tr>
<tr>
<td>4.337</td>
<td>−7.403</td>
<td>5</td>
<td>EDOG3</td>
<td>Bogota Fm.</td>
</tr>
<tr>
<td>4.337</td>
<td>−7.403</td>
<td>5</td>
<td>EDOG7</td>
<td>Bogota Fm.</td>
</tr>
<tr>
<td>4.337</td>
<td>−7.403</td>
<td>5</td>
<td>EDOG10</td>
<td>Bogota Fm.</td>
</tr>
<tr>
<td>5.068</td>
<td>−7.4565</td>
<td>3</td>
<td>19/321</td>
<td>Seca Fm.</td>
</tr>
<tr>
<td>4.859</td>
<td>−7.579</td>
<td>2</td>
<td>HVM563</td>
<td>San Juan de Río</td>
</tr>
<tr>
<td>4.852</td>
<td>−7.565</td>
<td>2</td>
<td>HVM528</td>
<td>Upper Hoyón Fm.</td>
</tr>
<tr>
<td>4.792</td>
<td>−7.509</td>
<td>2</td>
<td>HVM507</td>
<td>Middle Hoyón Fm.</td>
</tr>
<tr>
<td>4.851</td>
<td>−7.743</td>
<td>11</td>
<td>HVM501</td>
<td>Lower Hoyón Fm.</td>
</tr>
<tr>
<td>9.602</td>
<td>−7.562</td>
<td>16</td>
<td>B39</td>
<td>Eoceno La Loma unit</td>
</tr>
<tr>
<td>9.540</td>
<td>−7.285</td>
<td>16</td>
<td>Sororia M45</td>
<td>Cuervos Fm.</td>
</tr>
<tr>
<td>7.739</td>
<td>−7.606</td>
<td>15</td>
<td>RC-1</td>
<td>Cuervos Fm.</td>
</tr>
<tr>
<td>7.739</td>
<td>−7.606</td>
<td>15</td>
<td>Pe-5</td>
<td>Cuervos Fm.</td>
</tr>
</tbody>
</table>

Northern Colombia and western Venezuelan sedimentary rocks: (localities 15 to 19) |

Latitude	Longitude	Locality	Unit	Palynological age	Rock name	Total analyzed zircons	Mean age (Ma)	MSWD	N of Zr	
10.802	−7.2548	19	MS10	Mossa Fm.	Early Eocene	Pezzu tuff	49	55.4±0.7	0.21	10
10.802	−7.2548	19	Mañe 105 m	Mossa Fm.	Early Eocene–Paleocene boundary	Litharenite	10	56.0±0.5	0.05	6
11.812	−7.3959	18	MarE2-709	Maracaibo Fm.	Middle Eocene	Litharenite	98	54.1±0.6	0.11	6
11.141	−7.3577	17	Tababo-1	Tababo Fm.	Late Paleocene	Sublitharenite	96	56.3±0.9	0.13	6
10.540	−7.3025	16	Sororia M45	Cuervos Fm.	Late Paleocene	Sublitharenite	95	58.7±0.8	0.14	3
7.739	−7.606	15	BC-1	Cuervos Fm.	No reported age	Litharenite	71	58.7±0.8	0.14	3
7.739	−7.606	15	Pe-5	Cuervos Fm.	No reported age	Sublitharenite	92	50.4±2.2	0.035	3

See Fig. 2 for location, 3 for stratigraphic position and 6 for age-population diagrams.
comparison of the new U–Pb zircon ages that we present here and the previous K–Ar geochronology.

4.2. U/Pb detrital zircon geochronology

For the Eastern Cordillera and adjacent basins (localities 1 to 11), zircon age population between 45 and 65 Ma was reported in 9 of the 14 localities. Sandstone composition from the 9 localities with 45–65 Ma ages ranges from sublitharenite, litharenite and feldspathic litharenite (Table 2), with locality 5 (Usme) including an interval of volcaniclastic rocks. Maximum age of deposition was calculated for 14 samples (Table 2); 2 samples collected in middle Eocene strata yield ages between 45 and 49 Ma at nearby localities 10 and 11 (Pesca and Paz de Río areas) (Table 2), 2 samples from undated lower Paleocene units have mean ages between 62 and 64 Ma in localities 3 and 7 (Guaduero and Checua areas), whereas the other 10 samples are in the range of 54 to 60 Ma. The former 10 samples were collected from Paleocene–lower Eocene units, with exception of sample HM563 that correspond to a middle Eocene unit.

In locality 5 (Usme), volcanic zircons recovered from volcaniclastic deposits in the Bogotá Formation (sample D928) yield a depositional age of 56.2±1.6 Ma (Figs. 2, 3 and 5a). Other 3 samples collected above that level have a high concentration of 45–65 Ma volcanic zircons (Figs. 3 and 6a), but other 3 samples analyzed below that level do not report 45–65 Ma detrital zircons.

For the basins in the northern segment of Colombia (localities 15 to 19 in Figs. 2 and 3), 45–65 Ma ages were reported in 5 localities in samples collected in units of Paleocene–lower Eocene age. Locality 19 (Manuelote Syncline) includes an interval of a felsic tuff, and sandstone composition from the 5 localities is very variable. Maximum age of deposition was calculated for 6 samples (Table 2); 4 samples yield ages between 54 and 56 Ma, and the other two of 50 Ma and 58 Ma. In locality 19, volcanic zircons recovered from the felsic tuff yield a depositional age of 56.09±0.03 Ma (Jaramillo et al., 2010; Fig. 5b).

Detrital zircon age populations older than 65 Ma show lateral variation in these samples (Fig. 6a and b). Those adjacent to the Central Cordillera (localities 1 to 3; San Juan de Río Seco and Guaduero, Fig. 6a) and Santa Marta Massif (localities 16 and 17; Cesar and Ranchería basins, Fig. 6b), Cretaceous (70–90 Ma), Jurassic (150–190 Ma) and Permo-Triassic (230–300 Ma) ages are the dominant age populations. In contrast, age populations older than 1300 Ma are the dominant in locality 12 on the eastern flank of the Eastern Cordillera (Medina section, Fig. 6b), whereas ages in the range of 65 to 300 Ma

Fig. 5. Results from (A) volcaniclastic rocks in locality 5 (Usme) with fragments of volcanic rocks (Lv) and fresh plagioclase (Pl), and (B) cathodoluminescence images of detrital volcanic zircons in the same locality from upper volcaniclastic beds. (C) Delsic tuff in locality 19 (Manuelote Syncline, taken from Bayona et al., 2011). (D) siliciclastic rocks with sedimentary and metamorphic rock fragments in section 12a (Medina).
are in very low amount. Samples from the other localities in the axial zone of the Eastern Cordillera (Fig. 6a) and Catatumbo basin (Fig. 6b) have age populations that vary from the Mesozoic to the Precambrian.

5. Discussion

45–65 Ma U/Pb ages reported above in plutonic rocks of the Central Cordillera and in the synorogenic clastic wedge document clearly a major regional event of magmatism, and the absence of younger zircons ages marks a shutdown of magmatism ca 45 Ma. Magmatic activity extended along the continental margin for ca 700 km, and detrital volcanic zircons are reported in localities as far as 400 km from the collided margin (Figs. 7 and 8). Plutonic remnants of the extinct early Paleogene volcanic arc that was documented in the Santa Marta Massif to the north (Cardona et al., 2011) can be also extended southward to the Central Cordillera, as indicated by the newly obtained U–Pb zircon crystallization ages from lower Paleogene intrusive rocks (Fig. 1), and likely continued farther north in the restored position of the Guajira peninsula.

The nearly coeval magmatic and sedimentary ages reflect the input from volcanic complexes and the associated erosion of the shallower level plutonic complexes (Malusà et al., 2011). Detrital zircon populations recorded in Paleocene–middle Eocene strata indicate that volcanic detritus were transported by fluvial systems and volcaniclastic processes that developed on both the collided continental margin and intraplate settings rather from distant oceanic magmatic arcs. Even though ash-fall deposits may extend thousands of kilometers from the magmatic arc (Ingersoll et al., 2003), sedimentological evidences are more akin to continental subaerial volcanic sources (Bayona et al., 2010). Geochemical analysis in zircon fragments and volcaniclastic rocks should be carried out to test the hypothesis of marginal and intraplate magmatism.

A) Eastern Cordillera of Colombia
Fig. 6. a and b: U/Pb ages for detrital zircons from the Eastern Cordillera localities and northern Colombia–western Venezuela basins, shown as total number of analyses and PROBABILITY density distribution histograms following ISOPLOT (Ludwig, 2007). Left diagrams show the whole zircon populations, whereas right diagrams show populations younger than 300 Ma. Curves of probability density distribution from other studies are shown for comparison. In the western domain of the Eastern Cordillera (Fig. 6a, San Juan de Rio Seco and Guaduero) note the very low amount of Amazon craton zircon population and high content of 70–100 Ma detrital zircon ages, whereas in the eastern domain (Fig. 6b, Medina) the dominant population is from the Amazon craton and zircon age population from 70 to 100 Ma are almost absent. Also, note the relative abundance of Paleogene zircons in Usme, Paz de Rio (Fig. 6a), Medina and Manuelote syncline areas (Fig. 6b) that are not adjacent to magmatic arc of the Central Cordillera and Santa Marta Massif (Fig. 2).
The dominance of Cretaceous to Permian (70–300 Ma) detrital zircon populations in the westernmost localities indicates that their magmatic arc source growth along the Central Cordillera–Santa Massif belt. The fluviatile system mixed volcanic zircons with synorogenic detritus produced by the uplift of basement rocks exposed along the collided margin of the Central Cordillera (Bayona et al., 2011; Gómez et al., 2003; Nie et al., 2012). Meso-Proterozoic and older detrital zircon populations reported in the easternmost localities differ significantly from the westernmost localities, indicating that the fluviatile systems transporting volcanic detritus in the easternmost locality were derived from a clearly different source.

In the sedimentary record of tropical basins, the Paleocene basins of the northern Andes (Wing et al., 2009), intense chemical weathering precludes the persistence of unstable fragments in fluviatile systems for more than 100 km, contrasting with zircon grains that are usually more prompt to survive fluviatile transport of hundreds to a thousand of kilometers (e.g., Amoroco et al., 2011; Ingersoll et al., 2003; Johnsson et al., 1991; Mapes, 2009). Unstable metamorphic and volcanic rock fragments observed in litharenitas and sublitharenitas with 45–65 Ma volcanic zircons (see references in Appendix 2) point to nearby source areas. The existence of intraplate volcanic centers, as suggested here, also could explain the irregular thin interbeds of pyroclastic flows reported in localities 5 and 19 (Fig. 5).

Intraplate magmas could be related to reactivated faults that involve basement rocks and become a main pathway for the construction of intraplate magmatic centers. Bayona et al. (2011) interpreted intraplate magmatic activity in the western Perija Range (locality 19), coeval with Paleocene magmatism in the collided margin (Santa Marta Massif; Cardona et al., 2011) to the reactivation of Jurassic extensional faults of the Perija Range (Fig. 7).

A similar tectonic scenario may be proposed farther south, linking Paleocene magmatism in the Central Cordillera and reactivation of faults in the Eastern Cordillera and proximal Llanos basin. Eastern basement highs, like those presently buried by Cenozoic foreland strata in the southern proximal Llanos Basin (Bayona et al., 2007) have yielded zircon ages >1300 Ma in Neoproterozoic low-grade metasedimentary rocks (Ibañez-Mejia et al., 2009). These basement highs could explain both the craton-derived zircon population (>1300 Ma) as well the presence of metamorphic rock fragments in Paleocene sandstone beds of easternmost localities (Bayona et al., 2008). Although Paleogene magmatic rocks have not been reported yet in the Eastern Cordillera or southern Llanos basin, these magmatic bodies could be totally eroded, or buried either by tectonic loads of the Eastern Cordillera or by foreland sediments in the Llanos basin. Intraplate magmatism is a common feature on the Meso-Cenozoic magmatic evolution of the Andes, and it has been well recognized in the Eastern Cordillera and adjacent basins for Cretaceous (Vasquez et al., 2010) and Mio-Pliocene time (Taboada et al., 2000; Vasquez et al., 2009).

Magmatic activity had a maximum peak in 54–60 Ma, as recorded both in the Central Cordillera–Santa Marta plutons and detrital volcanic zircons from the synorogenic clastic wedge. Volcanic zircons provide a new chronostratigraphic constraint for correlation of Paleocene–Lower Eocene strata (Figs. 2 and 3), mainly in localities where biostratigraphic studies in alluvial to fluviatile continental deposits gave negative results. Even though a more systematic sampling
is needed to constrain the end of syn-depositional magmatic record, the data compiled here indicate that magmatism in both the collided margin and intraplate settings ceased at 50 Ma, although in few intraplate localities the youngest record is ca 45 Ma. This suggests that magmatism ended in early middle Eocene time.

Late Cretaceous arc–continent collision was followed by Early Paleogene magmatism along the collided continental margin (Central Cordillera and Santa Marta Massif) and intraplate volcanism. Early Paleogene magmatism was associated with the subduction of the Caribbean plate beneath the South America margin (Fig. 8A), as it has been suggested for areas farther north (Bayona et al., 2011; Cardona et al., 2011). This plate, which seems to be formed in a Pacific plate localities the youngest record is ca 45 Ma. This suggests that magmatism ended in early middle Eocene time.

The installation of a shallow-angle subduction regime in the Pacific plate localities the youngest record is ca 45 Ma. This suggests that magmatism ended in early middle Eocene time.

The faith on the existence of this former Caribbean slab in the Colombian margin is also seen by the tomographic and seismic record of a relict slab over the Nazca plate (Folguera and Ramos, 2009). The rapid end of magmatic activity both along the margin and intraplate settings may be related to: (1) the difficulty of the thick plateau to subduct, (2) obliqueness of the margin and the northeastern migration of the Caribbean plate (Kennan and Pindell, 2009), and (3) the northward migration of the South America craton (Somoza, 2007) and trailing segment of the Caribbean plate (Panama arc, Montes et al., 2012) that transformed the Caribbean–South American margin from a convergent magmatic margin to a transpressive non-magmatic margin (Fig. 8).

The faith on the existence of this former Caribbean slab in the Colombian margin is also seen by the tomographic and seismic record of a relict slab over the Nazca plate within the Colombian Andes (Cortés et al., 2005; Taboada et al., 2008) (Fig. 9).

6. Conclusions

U/Pb plutonic and detrital zircon ages found in intrusive rocks and synorogenic lower Paleogene strata, respectively, document an early Paleogene continental volcanic activity in the northern Andes that longitudinally extended ca 700 km. Magmatic activity occurred predominantly between 54 and 59 Ma, providing a new
chronostratigraphic constraint for correlation of continental Paleocene–Lower Eocene strata.

The differences in whole detrital zircon population between westernmost and easternmost localities, the presence of unstable rocks fragments in sandstone beds that contain volcanic zircons, and irregular thin volcaniclastic deposits allow to infer that volcanic activity reached intraplate settings as far as 400 km from the collisional margin.

This short period of magmatism is related to the oblique and shallow subduction of an oceanic plateau-like crust beneath the northwestern corner of South America plate. This magmatic activity reinforce the hypothesis on the subduction of oceanic plateaus and their effects in the modification of the continental crust. The rapid termination of magmatic activity in middle Eocene time is related to the difficulty of the plateau to subduct and the northward migration of the Caribbean and South America plates.

Supplementary materials related to this article can be found online at doi:10.1016/j.epsl.2012.03.015.

Acknowledgments

This research was funded by Corporación Geológica ARES, Colciencias, Ecopetrol S.A-ICP (project “Cronología de la deformación de cuencas subandinas”), Hocol S.A. and Maurel & Prom. Andres Mesa (Hocol S.A.) provided the location of Paleocene
sandstones in localities 7 and 9. Comments of Mauricio Parra and two anonymous reviewers improved the content of this manuscript.

References

Kerr, A.C., White, R.V., Thompson, P.M.E., 2000. No oceanic plateau–no Caribbean Plate? The seminal role of an oceanic plateau in Caribbean