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Miocene flooding events of western Amazonia
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There is a considerable controversy about whether western Amazonia was ever covered by marine waters during the
Miocene [23 to 5 Ma (million years ago)]. We investigated the possible occurrence of Miocene marine incursions in the
Llanos andAmazonas/Solimões basins, using sedimentological andpalynological data from two sediment cores taken in
eastern Colombia and northwestern Brazil together with seismic information. We observed two distinct marine intervals
in theLlanosBasin, anearlyMiocene that lasted~0.9My (millionyears) (18.1 to17.2Ma) andamiddleMiocene that lasted
~3.7My (16.1 to 12.4Ma). These twomarine intervals are also seen in Amazonas/Solimões Basin (northwestern Amazonia)
but were much shorter in duration, ~0.2 My (18.0 to 17.8 Ma) and ~0.4 My (14.1 to 13.7 Ma), respectively. Our results
indicate that shallow marine waters covered the region at least twice during the Miocene, but the events were short-
lived, rather than a continuous full-marine occupancy of Amazonian landscape over millions of years.
INTRODUCTION
The Neogene history of Amazonia is essential for understanding the
evolution of the rainforest and associated fauna living in one of themost
diverse places on Earth (1). A central question about our understanding
of Amazonia remains unsolved: Did continental-scale marine flooding
occur in western Amazonia during the Neogene? Miocene marine
transgressions in the continental interior would have had a profound
effect on the diversification and structuring of both terrestrial and
aquatic Neotropical communities (1–6).

To date, about 80% of Amazonian landscape is occupied by terra-
firme forest, where flooding is rare, whereas ~20% is characterized by
wetlands (annually flooded floodplains with isolated lakes and river-
bound oxbows) (7, 8). Flooded and terra-firme forests have distinctive
floras that are among the most diverse on the planet (9). However, dur-
ing the Miocene, the situation in western Amazonia was very different.
Widespread occurrence ofMiocene sediments indicates that subsidence
of westernAmazonian basins was active, extensive (1, 10), and probably
driven by plate-mantle interaction associated with the rise of the Andes
(11). TheseMiocene sediments, known as the Solimões, Pebas, andAcre
formations, are on average 250 to 300 m thick but, in some places, can
be more than 1000 m in thickness (12, 13). Many of these sediments
have been studied over the years (for amore comprehensive list of pub-
lications, see the SupplementaryMaterials) (14–19). Previous investiga-
tions focused primarily on isolated river outcrops, where generally only
5 to 60 m of strata are exposed. Lack of exposure makes it very difficult
to study a complete and continuous Miocene sequence.

There are several conflicting interpretations of the Miocene deposi-
tional environment in western Amazonia. They include (i) an epi-
continental shallow sea that covered the Amazon for millions of
years (4, 20); (ii) a large freshwater megalake, either long-lived Neo-
gene [15 My (million years)] or Pleistocene-Holocene (16); (iii) a fluvio-
lacustrine systemwith extensive floodplains and a fewmarine incursions
(17, 21–23); (iv) a high frequency of transgressive-regressive bay-margin
successions (18, 24); (v) avulsive fluvial belts in a floodbasin-floodplain
environment lacking marine influence (12, 25); (vi) a long-lived [23 to
8 Ma (million years ago)] megalake/wetland system (or “para-marine
megalake,” as it is an environment without a modern analog), composed
of widespread and semipermanent aquatic ecosystems (26, 27); (vii) a
complex series of interconnected megalakes overlying a regional pene-
plain (14); and (viii) a tidal system(28).All of these interpretations involve
discussion of the evidence formarine incursions during theNeogene.Did
they occur, and if so, how frequently and for how long?

All recent studies show a biogeographic connection betweenwestern
Amazonia and the Llanos Basin of Colombia duringmost of theMiocene
(4, 20, 22, 26, 29), yet direct evidence for a marine pathway is lacking. Ma-
rine incursion intoAmazonia, if any, should have comeprimarily through-
out the Colombian Llanos (3, 18, 20) and the Venezuelan Barinas/Apure
and Eastern basins (fig. S1) (19). We analyzed age, fossil record, geo-
chemistry, and depositional environments on two cores from a nearly
horizontal Miocene sequence in the Llanos and Amazonas/Solimões
basins, together with seismic information and electric logs, to identify
the timing, duration, and frequency of marine floodings during the
Miocene in western Amazonia (see Fig. 1, fig. S2, Materials and
Methods, and the Supplementary Materials).
RESULTS
Marine intervals
A total of 933 palynomorph types and 54,141 individuals were counted
and identified from the cores Saltarin and 105-AM (tables S1 and S2).
Saltarin has two stratigraphic intervals composed of laminated, greenish
mudstones that contain a high proportion of marine palynomorphs
(MPs) (see Fig. 1, figs. S3 and S4, and the Supplementary Materials).
The lower interval spans 645.6 to 617.6 m (MP mean = 24.3%; table
S3), and the second interval spans 548 to 408.4 m (MP mean = 39.6%;
table S3). The highMP percentages in those intervals contrast with a sig-
nificantly lower proportion of MPs in interbedded intervals (interval
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Fig. 1. Core correlation andmarine intervals in the Llanos andAmazonas/Solimões basins. (A) Location of seismic lines, wells, and outcrops used in this study in the Llanos
Basin of Colombia and in the Amazonas/Solimões Basin near the Colombia-Brazil boundary. (B) Correlation of the stratigraphic units drilled in the Saltarin and 105-AMwells using
age control established by palynology and sequence stratigraphy analysis. The depositional environment interpretation and the abundance of MPs identify the two intervals of
marine incursions, the early Miocene incursion (EMI) and themiddle Miocene incursion (MMI), in each well and indicate thicker deposition of marine deposits in the Llanos Basin.
Biostratigraphic zones (T-) follow those in the study of Jaramillo et al. (56). MD, meters depth. (C) Macrofossils found in the Saltarin well: (1) tooth of a Carcharhiniformes shark
(fig. S6) and (2) mantis shrimp (fig. S7). These fossils are further evidence of themarine incursion that covered the Llanos Basin. See the Supplementary Materials for a detailed
description and identification of these fossils. Depositional environmentswere grouped into three broad categories: (i) Continental environment that represents accumulation
in fluvial channels and adjacent floodplains by subaerial exposure; (ii) Marginal environment that represents accumulation on deltaic plains; low-energy wetlands with swamps,
ponds, and channels; and shallow freshwater lacustrine systems; and (iii) Marine environment that represents shallow marine water. Notice that the Marine environment of
105-AM is shallower and less saline than the marine intervals in Saltarin.
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>645.6 m, MP mean = 2.7%; interval 617.59 to 548.1 m, MP mean =
3.9%; interval <408.4 m, MP mean = 0.9%; P < 0.01, t test; df = 53.2;
Supplementary Materials), which are dominated by fine- to coarse-
grained sandstones of the Continental environment (see Fig. 1, figs.
S3 and S4, and the SupplementaryMaterials). TheMPassemblage com-
prises 8 species of dinoflagellates/acritarchs in the lower interval and
25 species in the upper interval (see fig. S5, table S1, and the Supple-
mentary Materials). The relatively low values of the branched versus
isoprenoidal tetraether (BIT) index for both the lower interval (BIT
mean = 0.26; SD = 0.14; n = 5) and upper interval (BIT mean = 0.3,
SD = 0.2, n = 13) also indicate high input of marine-dwelling Thau-
marchaeota and low input of soil-derived tetraether lipids that are typ-
ical for shallow marine sections (table S4) (30) and are significantly
lower than BIT values for the modern Amazon Basin (P < 0.001, t test;
df = 34.12) [modern values are reported in Table 3 of Zell et al. (31)].
Twomacrofossils in the lowermarine stratigraphic interval also indicate
a marine environment. The first is a shark tooth at 630.08 m, identified
as Carcharhiniformes gen. et sp. indet. (Carcharhinus or Sphyrna) (see
Fig. 1, fig. S6, and the SupplementaryMaterials). Representatives of this
shark group are common inhabitants of marine environments, al-
though some species can tolerate low salinity levels (brackish environ-
ments) (32). A secondmacrofossil, recovered at 636m,was identified as
Squillidae (see Fig. 1, fig. S7, and the SupplementaryMaterials). Squillids
are strictly marine stomatopods that dwell in burrows in soft, muddy to
sandy sediments of tropical and subtropical low intertidal to shallow
subtidal habitats (33). The proportion of lacustrine palynomorphs is
low across the section (mean = 3.4%) and varies little among the five
stratigraphic intervals (table S3).

The core 105-AM also has two stratigraphic intervals with a high
proportion of MPs, but the intervals are much thinner than those at
Saltarin (Fig. 1 and figs. S4 and S8). The lower interval spans 293.3 to
284 m (MP mean = 33.8%; table S3), and it is composed of claystones,
with organic matter and palynomorphs of the Marine environment
grading to sublitharenites of the Marginal environment (fig. S8).
The second interval, spanning 101.4 to 96.7 m (MP mean = 16.3%),
consists of mollusk-rich carbonaceous siltstones with palynomorphs
of the marine environment (fig. S8). The mean proportion of MPs
in these intervals is significantly higher than in the interbedded inter-
vals (interval >293.3 m, MP = 2.4%; interval 283.9 to 101.5 m, MP =
0.1%; interval <96.7 m, MP = 0.1%; P < 0.04, t test; df = 7) (see the
Supplementary Materials). Intermarine intervals are dominated most-
ly by the Marginal environment and composed of sandstones, lignites,
and paleosols in the muddy facies. Cross-bedded sandstones are regis-
tered in strata underlying the lower marine interval, whereas strata
overlying the upper marine interval show a significant increase in
sandstone interbeds and a decrease in macrofossils (Fig. 1 and fig.
S8). The MP assemblage comprises 15 species of dinoflagellates and
acritarchs in the lower interval and 10 species in the upper interval
(fig. S5 and table S2). The proportion of lacustrine palynomorphs is
low across the section (mean = 3.9%) and similar among the five strat-
igraphic intervals (table S3). The variation of lithological associations
in both marine intervals of 105-AM, the short periods of subaerial
exposure to develop paleosols in the lower marine interval, and the
lower proportion of MPs in both intervals compared to those in Salt-
arin indicate that the Marine environment of 105-AM is shallower and
less saline than the marine intervals in Saltarin (Fig. 1 and table S3).

Both marine intervals in Saltarin produce two well-defined subtab-
ular, parallel seismic intervals that can be traced throughout the entire
Llanos Basin, indicating their widespread extension. These two inter-
Jaramillo et al., Sci. Adv. 2017;3 : e1601693 3 May 2017
vals were deformed near the Vaupés Arch during the late Miocene (34).
Although this arch separates the Llanos Basin from the Amazonas/
Solimões Basin, seismic data suggest that during the early and middle
Miocene, the arch was not active and both marine incursions extended
farther to the south, reaching the Amazonas/Solimões Basin (see Fig. 2,
figs. S9 and S10, and the Supplementary Materials).

The biostratigraphic and sequence stratigraphic analyses of Saltarin
(see the Supplementary Materials) indicate that the core spans the early
to the late Miocene, biostratigraphic zone T-12 Horniella lunarensis to
zone T-17 Cyatheacidites annulatus, 18.5 to 5.5 Ma (see Fig. 1, fig. S11,
and the Supplementary Materials). The lower marine interval (645.6 to
617.6 m) extends from zones T-12 to T-13, ~18.1 to 17.2 Ma, respectively,
earlyMiocene, lasting ~0.9My (Figs. 1 and 2 and fig. S4). The uppermarine
interval (548 to 408.4 m) extends from zones T13 to T16, 16.1 to 12.4 Ma,
respectively, middle Miocene, spanning ~3.7 My (Fig. 1 and fig. S4).

Graphic correlation of 105-AM indicates that the core spans the ear-
ly to the late Miocene, biostratigraphic zone T-12 Horniella lunarensis
to zone T-16 Fenestrites spinosus, 18.8 to 10.7 Ma (see Fig. 1, fig. S12,
and the Supplementary Materials). The lower marine interval (293.3 to
284 m) lies within zone T-12, 18.0 to 17.8 Ma, early Miocene, lasting
~0.2 My (Figs. 1 and 2). The upper marine interval (101.4 to 96.7 m)
lies within zone T-15, 14.1 to 13.7Ma,middleMiocene, lasting ~0.4My
(Figs. 1 and 2 and fig. S4).
DISCUSSION
Hoorn et al. (1) described three major phases in Amazonia: (i) 24 to
16 Ma, lacustrine conditions alternating with episodes of fluvial drain-
age andmarginal marine influence; (ii) 16 to 10.5Ma, maximum extent
of lacustrine conditionswith amarginalmarine influence; and (iii) 10.5 to
ca. 7Ma, complex environment of deltaic, estuarine, and fluvial environ-
ments. Our results indicate that both the Llanos andAmazonas/Solimões
basins of western Amazonia experienced two distinct marine transgres-
sions (Figs. 1 and 2 and fig. S4). In the Llanos Basin, the first marine
transgression completely covered the basin during the early Miocene
and lasted ~0.9 My (18.1 to 17.2 Ma). This transgression event is also
registered in the Amazonas/Solimões Basin in northwestern Amazo-
nia, but its duration was much shorter there, lasting only ~0.2 My
(18.0 to 17.8 Ma) (Figs. 1 and 2 and fig. S4). The second transgression
in the Llanos Basin occurred during the middle Miocene and lasted
~3.7 My (16.1 to 12.4Ma). This transgression event continued toward
the Amazonas/Solimões Basin in northwestern Amazonia, but there, it
lasted amuch shorter time, only ~0.4My (14.1 to 13.7Ma) (Figs. 1 and 2
and fig. S4). All evidence indicates that marine incursions transformed
fluvio-lacustrine landscapes into a gently sloping marine environment,
being shallower and with lower salinities in 105-AM than in Saltarin.
In both marine intervals, the onset of the transgression occurred earlier
in the Llanos Basin or at the same time in the Amazonas/Solimões Basin
and lasted longer in the former (Figs. 1 and 2 and fig. S4). This geographic
patternwouldbe expected if transgressionprogressed fromtheCaribbean
intowesternAmazonia, asmanyhave suggested (3,18–20).Ourdata sug-
gest that the Llanos Basin transformed into a fluvial basin around
11.5 Ma, as Saltarin indicates, a condition that still prevails today (Figs.
1 and2, figs. S3 andS4, and the SupplementaryMaterials) (34). Therefore,
any possible late Miocene incursion into western Amazonia (3) would
have been derived from pathways other than the Llanos, like the Amazon
trunkvalley.Correlationof these twoeventswith strata inPutumayo,Napo,
Pastaza/Marañon, Acre, Ucayali, and Madre de Dios basins (fig. S1) re-
mains uncertain and is beyond the scope of the present analysis.
3 of 11
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Jaramillo et al., Sci. Adv. 2017;3 : e1601693 3 May 2017 4 of 11



SC I ENCE ADVANCES | R E S EARCH ART I C L E
The thin nature of bothmarine intervals in 105-AM (9.3 and 4.5 m)
could explain the large discrepancy in interpretations about possible
marine incursions in Amazonia (see the Supplementary Materials for
an extensive list of references). Better understanding of the Neogene
of western Amazonia will require a high-resolution study of multiple
sediment cores spanning the entire Neogene sequence throughout
the many basins that compose western Amazonia (35). Nevertheless,
it is evident that Amazonian landscape has had major changes over
the past ~20 Ma. We need to understand those changes across the
vast Amazonian landscape, because they must have had a profound
effect on the evolution and biogeographic distribution of its ancient
and extant biota as well as on the modern and ancient climate of the
continent.
MATERIALS AND METHODS
Location of study sites and seismic lines
The first core, Saltarin, is located in the Llanos Basin in eastern Co-
lombia (4.612°N and 70.495°W; 671 m thick) (see Fig. 1, figs. S2 and
S3, table S5, and the Supplementary Materials). The second core, 105-AM,
is located in the Amazonas/Solimões Basin in northwestern Brazil
(4.25°S and 69.93°W; 405 m thick) (see Fig. 1, figs. S2 and S8, table
S5, and the Supplementary Materials). We analyzed the sedimentology
of both cores together with two-dimensional (2D) seismic lines, the
electric logs of 14 wells located between Saltarin and 105-AM, and
previously published information on 15 outcrops (17, 22, 36) and
one core (see Fig. 2, figs. S2 and S13, tables S5 and S6, and the Sup-
plementary Materials) (21). A total of 1148 km of 2D seismic lines were
selected to correlate the two intervals of marine incursions in the Llanos
Basin with the intervals of marine incursions in the Amazonas/Solimões
Basin (EMI and MMI) (fig. S2 and table S6). Seismic lines selected in the
distal Llanos Basin cover the area between the Saltarin well and the
northernmost expression of the Vaupés Arch in the subsurface (fig.
S13). These seismic lines were analyzed in conjunction with the electric
logs of nine wells (fig. S9). In the Amazonas/Solimões Basin, a few seis-
mic lines along major rivers in Colombia and a published seismic line in
Brazil (37) allowed us to compare seismic facies between the two basins
(figs. S2 and S14); however, there are no wells near those seismic lines
that would permit a better integration of seismic facies with stratigraphic
units (fig. S10). A total of nine isolated outcrops of Miocene units along
river margins, as well as two cores in the Solimões Basin, are the only
reference for identification of the uppermost seismic level (fig. S2 and
table S5). Analysis was restricted to the Llanos and Amazonas/Solimões
basins (fig. S1).

Sedimentology and sequence stratigraphy
The cores Saltarin and 105-AM were described at a scale of 1:50 for
identification of grain-sized trends, sedimentary structures, clast
composition, thickness of lamination, bioturbation patterns, and mac-
rofossil identification, all of which are used to identify individual lith-
ofacies. The association of lithofacies within a vertical and conformable
succession supports the interpretation of depositional environment,
following the criteria of James and Dalrymple (38) and Miall (39).
Sequence stratigraphy analysis follows the criteria described by Catuneanu
et al. (40) for the definition of dominant stacking patterns of deposition
(aggradation, progradation, and retrogradation) and bounding surfaces
(sequence boundaries and maximum flooding surfaces) that could be
used for regional correlation. For fluvial strata, we used the terms “low
accommodation” and “high accommodation” system tracts (40). For
Jaramillo et al., Sci. Adv. 2017;3 : e1601693 3 May 2017
homogeneous fine-grained strata accumulated in shallow waters, we
used a combination of lithofacies and biostratigraphy data to identify
the stratigraphic surfaces of correlation. All sedimentological, bio-
stratigraphic, and stratigraphic data are stored and displayed using
the SDAR software (41). We grouped depositional settings into three
major depositional environments: Continental, Marginal, and Marine.
(i) The Continental environment includes interbeds of massive to cross-
bedded sandstones and conglomeratic sandstones with a sharp lower
contact and light-colored mudstones that can contain sideritic spheru-
lites and nodules. These lithofacies represent accumulation in fluvial
channels and adjacent floodplains, with evidence of paleosol devel-
opment by subaerial exposure. (ii) The Marginal environment in-
cludes greenish to gray, laminated, bioturbated, and locally fossil-rich
mudstones coarsening up to very fine grained to medium-grained
sandstones with coal interbeds. The association of these lithofacies
represents accumulation on deltaic plains; low-energy wetlands with
swamps, ponds, and channels; and shallow freshwater lacustrine sys-
ftems. (iii) The Marine environment includes planar-laminated and
massive fine-grained lithofacies with high proportions of MPs. In
105-AM, marine lithofacies also include organic matter (peat) and fossil
fragments. The content of both MPs (dinoflagellates, marine acritarchs,
and foram linings) and macrofossils in those lithofacies supports the
marine environment interpretation, yet salinities may have been in part
very low, ranging from >5 to up to 30 practical salinity units (36).

Marine intervals
All the analyses, unless noted, were performed using R for Statistical
Computing (42). All comparisons are the result of two-sided t tests to
evaluate the equality of means in two unpaired samples. P value is
reported for each test at the appropriate point in the text, along with
degrees of freedom (df) calculated using the Welch modification to
account for different variances in the groups being compared. We
measured the proportion of terrestrial palynomorphs (pollen and
spores), MPs (dinoflagellates, marine acritarchs, and foraminifera
linings), and freshwater indicators (Pediastrum and Botryococcus) in
233 samples, which included 138 samples from Saltarin (1 sample ev-
ery ~4.7 m) and 95 samples from 105-AM (1 sample every ~3 m). We
also measured the BIT index of 18 samples from Saltarin to quantify
the input of marine-dwelling Thaumarchaeota versus soil bacteria.
Two marine macrofossils found in Saltarin were described and iden-
tified. Pollen samples were prepared following standard palynological
techniques of digesting sediments in mineral acids (HF and HCl), al-
kaline treatment in KOH, heavy liquid separation using ZnBr2, and
sieving (43). We used panning rather than centrifugation to avoid
breaking apart fragile palynomorphs (for example, foram linings).
Samples were processed at the laboratory of Paleoflora, Bucaramanga,
Colombia. At least 300 palynomorph grains were counted per sample
when possible. Palynomorphs were grouped into three broad catego-
ries: terrestrial palynomorphs (pollen and spores), MPs (dinoflagellate
cysts, marine acritarchs, and foram linings), and freshwater algae in-
dicators (Pediastrum and Botryococcus). These groups have been used
extensively to distinguish continental, marine, and large-lake se-
quences (43–48). The proportion of the sum of MPs and freshwater
algae indicators (lacustrine) relative to the total sum of each sample
was calculated. Samples with counts lower than 100 grains were
excluded from the analysis. The BIT index is a proxy for the input
of soil and riverine organic matter in marine environments [see the
study of Schouten et al. (30) and references therein]. We measured
the BIT index of 18 samples from Saltarin to quantify the input of
5 of 11
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marine-dwelling Thaumarchaeota versus soil bacteria following the stan-
dard technique of Schouten et al. (49) (see the Supplementary Materials).

Paleogeographic reconstruction
The construction of 30 paleogeographic maps illustrates the extension
of Continental, Marginal, and Marine environments from ~18.4 to
~10.5 Ma. The source of the dating is discussed in the next section.
This quantified and age-controlled reconstruction of the temporal
and spatial change of depositional environments and illustration of
the extension of marine incursions was carried out in the open-source
softwareGPlates (see file S1) (50). This software uses the state-of-the-art
global plate reconstruction models, although accumulation occurs in a
minor deformed segment of the Andean foreland and intracratonic
basins. We used the global coastline and plate movement of South
American craton of GPlates (51) as the base information to load our
geological data (wells, outcrop localities, and seismic lines) and the in-
terpretation of (i) boundaries among nondeposition, Continental,
Marginal, and Marine environments; (ii) location of northern Andes
deformation front [modified from Reyes-Harker et al. (52)]; (iii) inter-
preted location of depositional boundary along the Guiana Shield;
and (iv) location of intrabasinal uplifts. Paleogeographic reconstruc-
tions of the marine intervals over the Marginal and Continental envi-
ronments used (i) lithological associations of strata bounded by
stratigraphic surfaces of correlations in the two analyzed wells (Saltarin
and 105-AM), which have detailed age control; (ii) lithological control
on the nine wells in the Llanos Basin, two wells with palynological
report of marine influence (53), and one well in the Solimões Basin;
(iii) palynological control and sedimentological analysis on nine out-
crops of the Colombian Amazonas published in the literature; (iv) lo-
cation of the northern Andes deformation front for middle and late
Miocene (52); (v) provenance analysis fromHoorn (22) and Salamanca
Villegas et al. (19) for the Amazonas outcrop sections, as well as from
Bayona et al. (54) for the Saltarin well; (vi) location of internal uplifts in
the Llanos Basin based on seismic information, as well as location of
regional structural highs, such as the Vaupés Arch, Baúl High, andMa-
carena Range (see section S4.1); and (vii) present extent of Miocene
strata on the Guiana Shield.

Chronology of cores
Dating and correlation of the two cores were done using sequence stra-
tigraphy together with graphic correlation (55) of palynological data
using a biostratigraphic zonation for the region that is calibrated with
magnetostratigraphy, carbon isotopes, and foraminifera (56). We also
measured the organic carbon stable isotope value in 118 samples from
Saltarin and 71 samples from 105-AM and analyzed the mollusk fauna
found in 105-AM to calibrate age determinations. Isolated outcrops re-
ported in the literature were also used to establish the extent of any pos-
sible marine event. We used graphic correlation to analyze the
palynological information. Graphic correlation (55, 57, 58) has been ex-
tensively used over the past decades in multiple studies (56, 59–61). It
does not make the a priori assumption that first and last appearance
data in a section record speciation and extinction events. It combines
the information of multiple sections to find the true stratigraphic range
of a taxon; therefore, the use of an “index” fossil is not necessary because
the whole assemblage is being compared. The graphic correlation anal-
ysis was done using GraphCor (62), and it was applied to the records
of both Saltarin and 105-AM.Weused the standard composite section
of Jaramillo et al. (56). Three rounds of correlation were performed
until the line of correlation (LOC) for each section became stable.
Jaramillo et al., Sci. Adv. 2017;3 : e1601693 3 May 2017
Derived from both LOCs of this first step, a LOC between Saltarin
and 105-AM was produced. Sequence stratigraphic events were added
to this LOC to improve the correlation in between the data provided by
biostratigraphy (Fig. 1). The modified LOC of Saltarin versus 105-AM
was then extrapolated to the LOCof both sections versus the composite.
The new LOC lines were reevaluated using the biostratigraphic data.
This process was repeated for several rounds until the LOCs of both
Saltarin versus composite, 105-AM versus composite, and Saltarin ver-
sus 105-AM were stable.

To transfer the stratigraphic position of each sample in the two well
cores frommeters to geologic time, we assumed a linear sedimentation
rate between the points in the LOC. It is reasonable to assume linearity
because the composite does not have major stratigraphic breaks. The
calibration of Jaramillo et al. (56) was used, and the R (42) code used
for the process can be found in file S2. The geological time scale follows
Gradstein et al. (63) and Hilgen et al. (64). It is important to stress that
ages provided in this research are relative, and the precision goes as far
as the calibration points for the zonation. Ages between calibration
points are derived from linear interpolation. Therefore, we do not argue
that our ages are precisely calibratedwith the geological time record, but
they indicate a relative age compared to sediments above and below.
These ages represent a hypothesis, and it is based on the best information
we have at themoment; they could change asmore calibration points are
added to the zonation or if a calibration point is shifted or the LOC of
each section is modified. Our ages are fully replicable, as we provide the
LOC, the full zonation, and the calibration points. Stable carbon isotopes
were used to support the age determinations produced by the graphic
correlation analysis. Stable carbon isotope values of bulk organicmatter
(d13COM) were measured via flash combustion at 1020°C in a Costech
elemental analyzer fitted to a Thermo Finnigan DELTAplus XL isotope
ratiomass spectrometer (Department ofGeological Sciences, University
of Florida). Carbonate present in the samples was removed by digestion
using 1.0NHCl.Analytical precision and accuracywere determined by
repeated analysis of the USGS40 standard. Overall uncertainty was
better than 0.08‰. Organic carbon content (total organic carbon)
was determined on the basis of measurement of total carbon by com-
bustion using a Carlo Erba elemental analyzer minus total inorganic
carbon measured by acidification using the AutoMate Prep Device
coupled to the UIC 5011 CO2 Coulometer.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/5/e1601693/DC1
section S1. General information
section S2. Sedimentology and sequence stratigraphy analyses
section S3. Marine intervals
section S4. Basin-wide correlations
section S5. Chronology of cores
section S6. Sites from the literature used in this study
section S7. Other published sites beyond the boundaries of this study
fig. S1. Map of northwestern South America showing the sedimentary basins discussed in the
text and the structural features that divide them.
fig. S2. Location of the nine wells in the Llanos Basin, two wells in the Amazonas/Solimões
Basin, and 13 seismic lines used for this study (geographic coordinates in tables S5 and S6).
fig. S3. Sedimentological and sequence stratigraphic interpretation of the Saltarin well (see
details of interpretation in table S7).
fig. S4. Graphic correlation of Saltarin versus 105-AM using geological time as scale in both
axes, rather than stratigraphic thickness.
fig. S5. Photomicrographs of selected dinoflagellate cysts and acritarchs.
fig. S6. Carcharhiniformes gen. et sp. indet. tooth from the core Saltarin, Carbonera C2
Formation, early Miocene, 630.08 m, specimen MUN STRI-40967.
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fig. S7. Dactyl of raptorial appendage (second thoracopod) of a fossil mantis shrimp from the
Carbonera Formation, early Miocene, Colombia, MUN STRI-40281.
fig. S8. Sedimentological and sequence stratigraphic interpretation of the 105-AM well (see
details of interpretation in table S8).
fig. S9. Stratigraphic correlation of the two major marine incursions (EMI and MMI) from the
Saltarin well to the northernmost expression of the Vaupés Arch in the subsurface (well I).
fig. S10. Stratigraphic correlation of the two major marine incursions (EMI and MMI) along the
northern Amazonas/Solimões Basin.
fig. S11. Graphic correlation between the standard composite section of Jaramillo et al. (56)
and core Saltarin.
fig. S12. Graphic correlation between the standard composite section of Jaramillo et al. (56)
and core 105-AM.
fig. S13. Seismic profiles in the Llanos Basin (see location in fig. S2; interpretation only
at one extreme of the line) illustrate the seismic facies of the two marine incursions (EMI
and MMI).
fig. S14. Interpreted 2D seismic profiles showing the contrasting difference of seismic facies
between undifferentiated Cenozoic and Cretaceous units in the Amazonas/Solimões Basin
(see fig. S2 for the location of seismic lines).
fig. S15. Graphic correlation between the cores Saltarin and 105-AM.
fig. S16. Carbon isotope data (d13C) versus stratigraphic position in core Saltarin on the left
panel.
fig. S17. Carbon isotope data (d13C) versus stratigraphic position in core 105-AM.
fig. S18. Photographs of shells from core 105-AM.
fig. S19. Molluscan biostratigraphy of core 105-AM.
table S1. Palynomorph counts for samples analyzed in core Saltarin.
table S2. Palynomorph counts for samples analyzed in core 105-AM.
table S3. Summary of palynological count data.
table S4. BIT index for Saltarin samples.
table S5. Geographic coordinates and information of outcrops and wells (coordinate system
WGS 1984) used in this study.
table S6. Geographic coordinates and information of 2D seismic lines (coordinate system WGS
1984) used in this study.
table S7. Summary of lithological and palynological indicators for depositional environment
interpretation of the Saltarin well.
table S8. Summary of lithological and palynological indicators for the depositional
environment interpretation of the 105-AM well.
table S9. LOC data points for Saltarin versus composite, 105-AM versus composite, and 105-AM
versus Saltarin.
table S10. Age of individual samples derived from the graphic correlation analysis.
table S11. Total carbon, total inorganic carbon, total organic carbon, total nitrogen, and carbon
isotope data for all studied samples.
table S12. Mollusks identified in core 105-AM.
file S1. GPlates project.
file S2. R code.
file S3. Graphic correlation.
file S4. Biostratigraphic and sequence stratigraphic events.
file S5. Lithological description of the cores 105-AM and Saltarin.
file S6. Excel tables.
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