19-MILLION-YEAR-OLD SPONDIOID FRUITS FROM PANAMA REVEAL
A DYNAMIC DISPERSAL HISTORY FOR ANACARDIACEAE

Fabiany Herrera,1,* Mónica R. Carvalho,† Carlos Jaramillo,† and Steven R. Manchester§

*Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, Illinois 60022, USA; †Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Ancón, Republic of Panamá; and §Florida Museum of Natural History, University of Florida, Gainesville, Florida 32601, USA

Editor: Michael T. Dunn

Premise of research. Recent classifications of Anacardiaceae recognize two subfamilies, Anacardioideae and Spondioideae. Most genera within Spondioideae are still recognized for having drupes with sclerified stones that vary in locule number and germination mechanisms. Spondioideae have been recognized in the Cenozoic fossil record of Europe, Asia, and North America. However, they have remained elusive in the Neotropics, where today they are an important component of tropical rain forests and seasonally dry tropical forests. Here, we describe three new species of fossil endocarps related to Spondias, Dracontomelon, and Antrocaryon.

Methodology. Fossil endocarps were collected from the 19–18.5 Ma (early Miocene) Cucaracha Formation, Panama Canal. The fossils were studied by physical sections, acetate peels, and X-ray microtomography. The fossil endocarps were exhaustively compared with all extant genera of Spondioideae.

Pivotal results. Spondias rothwellii sp. nov. and Antrocaryon panamaensis sp. nov. are so far the earliest and best evidence of these genera in the Neotropics. Dracontomelon montesii sp. nov. extends the occurrence of this genus to the early Miocene in Central America.

Conclusions. The new Cucaracha fossils reveal that Spondioideae were a significant part of the early Miocene forests in Panama. The extant natural habitats and occurrences of the newly recognized genera suggest multistratified rain forests and active biogeographical patterns for Spondioideae approximately 19 million years ago in southern Central America.

Keywords: Antrocaryon, Dracontomelon, endocarps, fossils, long-distance dispersal, Miocene, Neotropics, Panamanian Seaway, Spondias.

Online enhancements: videos.

Introduction

Anacardiaceae are a mostly tropical family of trees, shrubs, and lianas within the Sapindales with ~800 species in 82 recognized genera (Pell et al. 2011). Although some genera extend into warm temperate regions, Anacardiaceae are widely distributed in the New and Old World tropics and are a common element of tropical rain forests and seasonally dry tropical forests. Recent classifications of Anacardiaceae recognize two subfamilies, Anacardioideae and Spondioideae (Pell 2004; Mitchell et al. 2006; Pell et al. 2011); however, both subfamilies appear to be polyphyletic (Weeks et al. 2014). In the analyses of Weeks et al. (2014), the Spondioideae fall into two unrelated clades (named informally Spondioideae I and II). Anacardiaceae have been previously interpreted as having a Gondwanan origin (Raven and Axelrod 1974; Gentry 1982) based on their extensive tropical distribution and diversity. Nonetheless, recent phylogenetic reconstructions have shown that the widespread distribution of the family (and of numerous individual genera within) may be attributed to a more complex combination of mechanisms (e.g., variety of fruit morphologies, dispersal, and ecological strategies) and their ability to diversify into new niches (Weeks et al. 2014).

Fruits of many Anacardiaceae, and in particular most of the genera of Spondioideae, are distinctive for having drupes with sclerified stones that vary in locule number and germination mechanisms (e.g., simple pluglike opercula, recessed bilabiate germination valves, apical flaps, pores, or simple slits). The fruit morphology of all extant genera of Spondioideae has recently been comprehensively reviewed (Herrera et al. 2018). The main characters that can be potentially recognized in fossil endocarps and that are useful for the identification of genera include locule number; type, position, and shape of the germination mechanisms (e.g., simple pluglike opercula, recessed bilabiate germination valves, apical flaps, pores, or simple slits); the fruit morphology of all extant genera of Spondioideae has recently been comprehensively reviewed (Herrera et al. 2018). The main characters that can be potentially recognized in fossil endocarps and that are useful for the identification of genera include locule number; type, position, and shape of the germination mechanisms (e.g., simple pluglike opercula, recessed bilabiate germination valves, apical flaps, pores, or simple slits) of numerous individual genera within) may be attributed to a more complex combination of mechanisms (e.g., variety of fruit morphologies, dispersal, and ecological strategies) and their ability to diversify into new niches (Weeks et al. 2014).

Divergence time estimates indicate early to late Cretaceous radiations of Anacardiaceae (Weeks et al. 2014; Mueller-Riehl et al. 2016). A recent examination of fossils from the Deccan Intertrappean beds of central India indicates the presence of...
anacardiaceous wood during the latest Cretaceous to the earliest Paleocene (Wheeler et al. 2017). However, fossil fruits attributable to stem and crown group Anacardiaceae have not been found in the Cretaceous record. The earliest well-documented fossils of extant genera of the family range from the Eocene to the Miocene (e.g., Reid and Chandler 1933; Tiffney et al. 1994; Ramírez and Cevallos-Ferriz 2002; Burnham and Carrasco 2004; Manchester et al. 2007, 2009; Collinson et al. 2012; Fu et al. 2017).

A few reliable fossils of Anacardiaceae have been described previously from the Neotropics. Burnham and Carrasco (2004) described winged fruits of *Loxopyergium* from the Miocene of the Ecuadorian Andes, and today this genus is endemic to Caatinga of northeastern Brazil. Ramírez and Cevallos-Ferriz (2002) reported a diverse assemblage of anacardiaceous leaves from the Oligocene of Mexico. Herrera et al. (2012) reexamined the historical Tonosi locality of Berry (1918) and studied new fruit collections, in addition to those of Berry, resulting in the reassignment of *Diospyros macdonaldii* Berry to the Asian genus *Dracontomelon*. Fossil wood and pollen have also been described from the Neotropics (e.g., Graham 1985, 1988a, 1988b; Jaramillo et al. 2014; Pérez-Lara et al. 2017). On the other hand, other traditionally accepted anacardiaceous fossils have proven to be unreliable records of the family. For example, the Oligocene silicified cashews described as *Anacardium peruvianum* by Berry (1924, 1927) were reexamined based on new collections and placed into the extinct genus *Pseudoanacardium*, of uncertain familial affinity (Manchester and Balmaki 2018). Although Anacardiaceae are an important element of lowland to montane forests and seasonally dry to rain forests in the Neotropics, the fossil record of this family remains remarkably scarce in the region.

Here we report abundant and well-preserved permineralized fruits and pollen of Pseudoanacardium, of uncertain familial affinity (Manchester and Balmaki 2018). Although Anacardiaceae are an important element of lowland to montane forests and seasonally dry to rain forests in the Neotropics, the fossil record of this family remains remarkably scarce in the region.

Comparative Material

Fruit characters of all genera and most species of spondoid Anacardiaceae were recently studied by Herrera et al. (2018); the information on voucher specimens is provided in their article. Comparative data for extant Anacardiaceae were also obtained from available descriptions (e.g., Von Teichman 1987, 1990, 1992; Wannan and Quinn 1990; Mitchell et al. 2006; Pell et al. 2011; Mitchell and Daly 2015).

Fossil Preparation, Tomography, and Imaging

The internal fossil fruit structure was revealed by physical sections made with a Microslice II annular diamond saw with minimal kerf loss of about 30 μm from the path of the blade. Anatomical details of the fossil fruits were obtained by preparing acetate peels after etching the slices in 5%–10% hydrochloric acid for 5–10 s using the technique of Joy et al. (1956). We also obtained X-ray data sets for key fossil specimens using a GE Phoenix V|tome|x240 CT Scanner at the University of Florida College of Engineering Nanoscale Research Facility (NRF). Voltages, current, and timing were varied according to the resolution desired. We used a tungsten reflection target and 0.5-μm copper filter, at 210 kV and 270 μA, respectively, with 1900 images of a single specimen, for voxel size of 65 μm. Data sets from nano-CT were analyzed with Avizo 9.0 Lite (FEI Visualization Science Group, Bordeaux, France) to provide volume renderings, isosurface renderings, and virtual sections in transverse and longitudinal orientations. The original CT scan data sets are available online and also archived at the Morphobank website (http://morphobank.org/permalink/?P3460). Macrophotographs of the fossils with reflected light were captured using a Canon Rebel camera with a 100-mm macro lens attached to a StackShot system (Cognisys, Traverse City, MI), and successive digital images were merged using Helicon Focus software (Helicon Soft).

Systematics

Order—Sapindales Berchtold & J. Presl

Family—Anacardiaceae R. Brown, nom. cons.
Subfamily—Spondioideae

Genus—Spondias L.

Species—Spondias rothwellii Herrera, Carvalho, Jaramillo et Manchester sp. nov.

Specific diagnosis. Prolate drupes composed of a conspicuous central vascular bundle, surrounded by an endocarp that contains five locules and five lacunae. Endocarp conspicuously ornamented, appearing star shaped, T shaped, and with radiating ribs and spines, forming deer antler–like outlines in transverse and/or longitudinal sections. Mesocarp thick and composed of thin-walled parenchyma and sporadic sclereids. Locules single seeded, radially arranged near the center of the drupe, elliptical in longitudinal section. Each locule surrounded by a locular envelope (up to 4.7 mm thick in transverse section; [fig. 1H, UF60777]). The locular envelope and the endocarp appear more or less amorphous, sometimes with projecting spines to riblike structures (up to 1.9–4.5 mm long; [figs. 1A, 1D, 1F, 4E]). The endocarp consistently forms a distal horizontal T-like structure (as seen in longitudinal section) above the locules and the germination pores ([figs. 1D, 1F, 4D]).

The locules are single seeded, radially arranged near the center of the drupe, elliptical in transverse section (ca. 1.6–3.2 mm long and ca. 0.5–1.3 mm wide; [figs. 1B, 1C, 1H, 4A, 4B]) and straight to curved in outline in longitudinal section (ca. 7.6–10.8 mm long and ca. 0.5–1.2 mm wide; [figs. 1A, 1D, 4D, 4E]). Five radially arranged lacunae alternate with the locules; these are closed and variably shaped near the basal end of the drupe (rounded-triangular, nearly circular, four- or five-sided polygons; [figs. 1B [far left], 1C, 1H [left], 4B] to poorly defined and open near the center and apical end of the fruits (as seen in transverse sections; i.e., not enclosed by endocarp tissue; [fig. 1B [far right], 1H [right]]). Within each lacuna there is a ventral, longitudinal row of five to nine orbicules (ca. 0.4–1.2 mm in diameter; [figs. 1A, 1D–1F, 4D]). The orbicules are rounded cavities that may be seen singly in successive transverse sections ([fig. 1B]), but the longitudinal rows of them are best documented in longitudinal sections ([figs. 1A, 1D–1F, 4D]). As the CT scan images reveal, each locule is supplied with an internal bilabiate dehiscence mechanism in which the locular envelope opens along its apical keel, which is recessed within a pore of the endocarp wall ([fig. 4A, 4C–4E]).

The locular envelope is composed of horizontal encircling fibers forming a layer ca. 50–320 μm thick ([fig. 1G, 1H]). Between adjacent locular envelopes, the septum tissue is formed by isodiametric brachysclereids (ca. 47–74 μm in diameter; [fig. 1J]) and parenchyma (ca. 28–45 μm in diameter; [fig. 1K]). The endocarp tissue is largely formed by an intricate layer of fiber tracts (ca. 140–230 μm long; [fig. 1K]) and thick-walled sclereids (ca. 40–77 μm in diameter; [fig. 1L]). The mesocarp is predominantly composed of thin-walled parenchyma (ca. 20–60 μm in diameter) and sporadic sclereids.

Systematic placement. Fruits of S. rothwellii are indistinguishable from some extant species of Spondias. Endocarps of both are prolate and remarkably ornamented, typically pentalocular with recessed internal bilabiate germination (i.e., cryptic, hidden within the spongy tissue) in which the locular envelope opens along its apical keel ([figs. 1, 4A–4E, 5A–5G]). More strikingly, some living Spondias species and the Miocene S. rothwellii are unique within Spondioideae in having endocarps with a deer antler–like outline as seen in transverse section ([figs. 1B, 1C, 1H, 5C–5E]) and also by possessing ventral rows of orbicules within the lacunae ([figs. 1B–1F, 5D–5G]). So far, these two characters have been observed only in Neotropical species of the genus such as S. globosa, S. macrocarpa, S. mombin, S. purpurea, S. radikferi, and S. tuberosa (Herrera et al. 2018; figs. 5C–5G, 6B), while they appear to be absent from Old World species such as S. bipinnata, S. dulcis, and S. pinmata (Herrera et al. 2018).
Fig. 1 *Spondias rothwellii* sp. nov.

A, Holotype (UF60773).

Serial transverse sections of drupe from *A* showing a central vascular bundle and the endocarp containing five locules and five lacunae. Second image from left showing mesocarp tissue (upper arrow) and riblike ornamentation of endocarp (lower arrow); third image from left showing single-seeded locule (upper arrow) and minute orbicule within open lacuna (lower arrow).

C, Transverse section near equator showing deer antler–like ornamentation of endocarp, with lacuna (middle arrow) and locule (upper arrow) and faintly preserved mesocarp (lower arrow; UF60774).

D, Longitudinal section showing long and curved locale (right arrow) and one ventral row of seven orbicules (left arrow; UF60775).

E, Detail from *D*; note two locules and two ventral rows of orbicules.

F, Obliquely longitudinal section showing three locules and T-shaped apical end of the endocarp (arrow; UF60776).

G, Isolated specimen showing eroded, verrucate surface on lateral view (*left*); equatorial transverse section showing conspicuous mesocarp and central locules and lacunae (UF60784).

H, Transverse section near the distal end of fruit showing thick mesocarp (arrow) and endocarp including locular envelopes (*left*); section above equator showing conspicuously deer antler–like ornamentation of endocarp and five radially arranged locules and alternating with lacunae (*right*; UF60777).

I–L, Acetate peels from specimen in *C* showing anatomy.

I, Detail of central vascular bundle composed of radial files of xylem.

J, Detail of septum showing isodiametric brachysclereids and locale lining (arrow).

K, Detail of septum composed of parenchyma (upper zone) and fibrous endocarp.

L, Detail of thick-walled sclereids of endocarp.

Scale bars = 5 mm (*A–H*), 400 μm (*I*), 200 μm (*J, K*), 50 μm (*L*).
Hence, the fossil is most similar morphologically to the extant New World representatives.

Genus—Dracontomelon Blume

Species—Dracontomelon montesi Herrera, Carvalho, Jaramillo et Manchester sp. nov.

Specific diagnosis. Asymmetrically oblate to mushroom-shaped drupes composed of five radially arranged locules and five lacunae. Endocarp star shaped to pentagonal as seen in transverse section, with a small central vascular bundle; in longitudinal section, more or less mushroom shaped; outer surface of endocarp ornamented with up to 10 equatorial depressions. Locules single seeded, reaching nearly to the periphery of the endocarp, usually unevenly developed, elliptical to circular in transverse section (ca. 2.4–3 mm long and ca. 1–1.4 mm wide; figs. 2C, 2F, 4f); each locule is straight to reiform, with a phalloid distal portion in outline in longitudinal section (ca. 2.8–3.4 mm long and ca. 0.9–1.4 mm wide; figs. 2E, 2G, 4H, 4K). Five radially arranged lacunae alternate with the locules (ca. 1.6–2.3 mm long and 1.4–2.2 mm wide); these are almost triangularly shaped in transverse section and often appear filled with fibers (figs. 2C, 4f). The outer surface of the endocarp is ornamented with up to 10 equatorial depressions (figs. 1B, 4F, 4G). The lacunae are connected to the equatorial external depressions by a pair of channels (figs. 1C, 4f). No apertures are observed at the base of the endocarp, but sometimes a deep and single depression can be seen at the point of fruit attachment (figs. 2A [right], 4G). Each locule is topped by a distally placed simple operculum (apical stopper-like plug) that reaches the periphery of the endocarp.

Holotype. UF60827 (figs. 2A, 4F–4K).

Other material. UF60828 (fig. 2B), UF60832 (fig. 2C, 2H–2L), UF60829 (fig. 2D, 2E), UF60830 (fig. 2F), UF60834 (fig. 2G), UF60831, UF60833, UF60835, UF60836, UF60837.

Repository. Paleobotany collections of the Florida Museum of Natural History, University of Florida.

Stratigraphic position and age. Lower Cucaracha Formation; early Miocene; 19–18.5 Ma.

Localities. Gaillard Cut section (Lirio East outcrop) of the southeastern part of the Panama Canal (GPS: lat. 9°32′0″N, long. 79°39′40″W).

Etymology. This species is named in honor of Camilo Montes for his research contributions to the study of the geological evolution of Panama.

Detailed description. Drupes, asymmetrically oblate, mushroom shaped in lateral view (figs. 2A, 2E, 4F–4H), ca. 4.2–7.5 mm high and ca. 5.8–12 mm wide (measured at the widest point; n = 11). When the specimens are found isolated from the matrix or manually dissected, a smooth to slightly verrucate surface is exposed (fig. 2A–2C). Structurally, the drupes are composed of stone with a small central vascular bundle and five locules (pentalocular) and five well-developed lacunae (figs. 2A–2G, 4H–4K); adjacent to the locular envelope is a dark endocarp (preserved brown to black in our material); no mesocarp or exocarp is preserved in our specimens.

The central vascular bundle appears circular in transverse sections, ca. 0.2–0.5 mm in diameter (fig. 2C, 2F). The vascular bundle is composed of xylem with radial files of vessels, ca. 1–4 μm in diameter (fig. 2K). Phloem is either lacking or not preserved in our samples.

In transverse section, the locular envelope and the endocarp appear completely fused and circular to pentagonal in outline near the basal end of the drupes, encircling five locules and five lacunae (figs. 2C, 4f). Near the center and the apical end of the fruits, the locular envelope and the endocarp appear star shaped (fig. 2C [far right], 2F). In longitudinal section, the stone appears more or less mushroom shaped (figs. 2E, 4H, 4K).

The locules are single seeded, radially arranged near the center of the drupe, and almost reaching the periphery of the endocarp, usually unevenly developed, elliptical to circular in transverse section (ca. 2.4–3 mm long and ca. 1–1.4 mm wide; figs. 2C, 2F, 4f); each locule is straight to reiform, with a phalloid distal portion in outline in longitudinal section (ca. 2.8–3.4 mm long and ca. 0.9–1.4 mm wide; figs. 2E, 2G, 4H, 4K). Five radially arranged lacunae alternate with the locules (ca. 1.6–2.3 mm long and 1.4–2.2 mm wide); these are almost triangularly shaped in transverse section and often appear filled with fibers (figs. 2C, 4f). The outer surface of the endocarp is ornamented with up to 10 equatorial depressions (figs. 1B, 4F, 4G). The lacunae are connected to the equatorial external depressions by a pair of channels (figs. 1C, 4f). No apertures are observed at the base of the endocarp, but sometimes a deep and single depression can be seen at the point of fruit attachment (figs. 2A [right], 4G). Each locule is topped by a distally placed simple operculum (apical stopper-like plug) that reaches the periphery of the endocarp.

The locular envelope is ca. 270–300 μm thick and 6–12 seriate (fig. 2H, 2I), consisting mainly of periclinal fibers and thick-walled cells, ca. 13–18 μm in diameter (fig. 2I). The surrounding septal portion of the endocarp is formed almost entirely of brachysclereids (figs. 2L), ca. 14–23 μm in diameter. The remaining endocarp is composed of variously oriented tracts of tortuous fibers, ca. 90–130 μm long (fig. 2f).

Systematic placement. These fossils conform to Spondioideae in the radial arrangement of single-seeded locules alternating with lacunae and in the apically positioned germination valves. Compared to the fruits of all living Spondioideae (Herrera et al 2018), the petrified stones compare most favorably with extant Dracontomelon (endemic to India to Myanmar, Indo-China, tropical China, Malesia, and Fiji; figs. 5H–5K, 6C) in shape, configuration of the locules and lacunae, simple germination opercula (apical stopper-like plugs), and the pair of channels leading from each lacuna to the central equatorial depressions. They were also compared with the extinct genus Pentopericulum (known from the Eocene of Oregon and England; Manchester 1994) but are distinguished by the simple, rather than bipartite, germination valves.

Genus—Antrocaryon Pierre

Species—Antrocaryon panamaensis Herrera, Carvalho, Jaramillo et Manchester sp. nov.

Specific diagnosis. Subglobose to globose stone composed of a central vascular bundle, five locules, and five large lacunae. Endocarp prominently star shaped as seen in transverse section. Five prominent lacunae alternate in position with the locules; lacunae larger than the locules and more or less triangularly shaped in equatorial section. Each locule topped by a distally placed simple operculum (apical stopper-like plugs). A whorl of five depressions occurs at the base of the endocarp, alternating in position with the locules.
Fig. 2 *Dracontomelon montesii* sp. nov.
A, Holotype (UF60827). *Left*, apical view of asymmetrical endocarp showing five well-developed simple opercula (stopper-like plugs; arrow). *Right*, lateral view showing mushroom-like shape of endocarp, equatorial depression (upper arrow), and basal depression at fruit attachment (lower arrow).
B, Apical view of endocarp showing three exposed locule casts (arrow; UF60828).
C, Serial transverse sections of endocarp from base (left) to apex (right) showing a central vascular bundle, five locules, and five lacunae (arrow; UF60832).
D, Apical view of endocarp showing five simple opercula (stopper-like plugs; arrow; UF60829).
E, Longitudinal section of endocarp from D showing two locules (left arrow) and operculum (right arrow).
F, Transverse section near equator showing star-shaped endocarp and five locules (UF60830).
G, Detail of longitudinal section of endocarp showing locules and one operculum (arrow; UF60834).
H–L, Acetate peels from specimen in C showing anatomy.
H, Detail of endocarp showing locular envelopes and endocarp (arrow).
I, Detail of septum from H showing six- to 12-seriate locular envelope and locule lining (arrow); note periclinal fibers and thick-walled cells.
J, Detail of endocarp showing variously oriented tracts of tortuous fibers.
K, Detail of central vascular bundle composed of radial files of xylem (arrow).
L, Detail of septal brachysclereids. Scale bars = 2 mm (A–G), 400 μm (H), 200 μm (I, J), 20 μm (K, L).
Holotype. UF60957 (figs. 3A, 3B, 4L–4N).
Other material. UF60958 (fig. 3C, 3F–3J), UF60962 (fig. 3D), UF60959 (fig. 3E), UF60961.
Repository. Paleobotany collections of the Florida Museum of Natural History, University of Florida.
Stratigraphic position and age. Lower Cucaracha Formation; early Miocene; 19–18.5 Ma.
Localities. Gaillard Cut section (Lirio East outcrop) of the southeastern part of the Panama Canal (GPS: lat. 9°320’N, long. 79°3940’W).
Etymology. The specific epithet refers to Panama, where the fossils were found.
Detailed description. Stone subglobose to globose, ca. 9.2–13.1 mm high and ca. 12.5–16.3 mm wide (measured at the widest point; n = 4). Structurally, the stones are composed of a central vascular bundle, surrounded by five locules (pentalocular) and five well-developed lacunae (figs. 3A–3E, 4L–4N); no mesocarp or exocarp is preserved in our specimens.
In transverse section, the endocarp appears more or less circular to pentagonal in outline with a prominent star-shaped structure formed by the radiating locular envelopes (fig. 3A–3C). The drupes possess five radially arranged locules and five conspicuous lacunae (fig. 3A–3C). The locules are elliptical to circular in transverse section (ca. 2.3–4.6 mm long and ca. 0.8–2.5 mm wide; figs. 3A–3C, 4L) and more or less reniform in sagittal section with a phalloid apical portion (ca. 7.9–7.7 mm long and ca. 2.6–4.2 mm wide; figs. 3E, 4N). The five prominent lacunae alternate in position with the locules; these lacunae are larger than the locules (up to ca. 6–8 mm in diameter) and are more or less triangularly shaped in equatorial section (fig. 3B, 3C). The lacunae were likely empty at maturity; some appeared broken and wide; shaped in equatorial section (a phalloid apical portion (ca. 7.9–7.7 mm long and ca. 2.6–4.2 mm wide; figs. 3E, 4N). The five prominent lacunae alternate in position with the locules; these lacunae are larger than the locules (up to ca. 6–8 mm in diameter) and are more or less triangularly shaped in equatorial section (fig. 3B, 3C). The lacunae were likely empty at maturity; some appeared broken and filled with sediment (fig. 3A–3C). Each locule is topped by a distally placed simple operculum as revealed by the CT scan images (apical stopper-like plugs; fig. 4L, 4M). These opercula are arranged in a circle on the apical surface midway between apex and equator of the stone, ca. 2.7–6 mm long (measured along the longest axis) and ca. 3.1–4.1 mm wide (measured along the widest axis). The opercula are similar in thickness and cellular composition to the surrounding endocarp wall (fig. 3D). A whorl of five depressions occurs at the base of the endocarp, alternating in position with the locules (fig. 4L).
The central vascular bundle is ca. 0.6–1.2 mm in diameter (fig. 3A–3C). The locular envelope is ca. 0.3–0.4 mm thick (fig. 3F), consists of a locule lining a few cell layers thick of brachysclereids (cells ca. 5–10 µm in diameter; fig. 3F), surrounded by a dense tissue of interwoven tracts of fibers (individual fibers ca. 10–15 µm thick; fig. 3G, 3I). The remaining endocarp is composed mainly of tortuous fibers grading from obliquely periclinal near the center to mostly anticlinal near the periphery. Probable resin canals (ca. 320 µm in diameter) are present in the endocarp tissue (fig. 3H).
Systematic placement. These fruits correspond to Spindioideae in the radial arrangement of single-seeded locules, alternating with lacunae, and in the apically positioned germination valves. Compared to the stones of all living Spindioideae (Herrera et al. 2018), the permineralized specimens fit most favorably with extant Antrocaryon (endemic to tropical Africa and tropical South America; figs. 5L–5N, 6D) in shape, size, configuration of the locules and lacunae, and the simple germination opercula (apical stopper-like plugs). Some extant Poupartia species show a close similarity to A. panamaensis for having globose to subglobose pentalocular endocarps. At least three morphological types of endocarps were recognized for Poupartia in Herrera et al. (2018). The first two endocarp types, Poupartia type 1 and Poupartia type 2, are normally bisymmetrical and bilocular, unlike A. panamaensis (figs. 3A–3E, 4L–4N). Poupartia type 3, including P. minor, P. orientalis, and P. silicata (Herrera et al. 2018), has pentalocular, prolate to subglobose endocarps comparable to A. panamaensis. However, A. panamaensis can be distinguished from Poupartia type 3 endocarps mainly by having a thicker locular envelope (ca. 0.3–0.4 mm vs. 0.1 mm) and more consistent star-shaped endocarps as seen in transverse section.

Discussion

Comparison with Other Extant Genera of Spindioideae

The morphology of the three new Panamanian species unequivocally supports a relationship with extant members of the Anacardiaceae and in particular with the subfamily Spindioideae (Pell et al. 2011; Herrera et al. 2018; fig. 6). The fossils can be assigned to this subfamily based on the occurrence of drupes with endocarps that are more or less woody, structurally composed of a central vascular bundle, surrounded by a stone that contains radially arranged locules (i.e., pentalocular) and lacunae, and the presence of specialized structures for germination, such as stopper-like opercula and pores (see review of extant Spindioideae in Herrera et al. 2018). Among angiosperms, we do not recognize any other families with fruits having the same set of characters seen in Spindioideae.

Drupes of Spondias rothwellii, Dracontomelon montesi, and Antrocaryon panamaensis differ from each other in size, symmetry, shape, the ornamentation of the endocarp, presence or absence of oribicules, and details of the germination mechanism (figs. 1–4). Spondias rothwellii is identical to extant Neotropical Spondias species; this is supported by the presence of ornamented endocarps with a deer antler-like outline (as seen in transverse section) and by the occurrence of ventral rows of oribicules within the lacunae. The pentalocular drupes of D. montesi and A. panamaensis are characterized by having conspicuous and distally placed simple opercula (apical stopper-like plugs) that top the locules (figs. 2A, 2B, 3D, 4F, 4I, 4L, 4M). Simple opercula are also present in the extant Spindioideae genera Cyrtocarpa (endemic to the Neotropics), Lannea (endemic to sub-Saharan Africa, South and Southeast Asia, and Socotrta), Operculicarya (endemic to Madagascar and the Comoros and Aldabra Islands), Poupartia (endemic to Mascarene Islands and Madagascar), and Sclerocarya (endemic to Madagascar and sub-Saharan Africa; see detailed comparisons, figures, and descriptions in Herrera et al. 2018). Cyrtocarpa is distinguishable from D. montesi, A. panamaensis, and all other Spindioideae genera by having an irregular and variable position of the opercula. Lannea and Operculicarya drupes are bisymmetrical and typically unilocular, rarely bilocular in the latter. Dracontomelon montesi and A. panamaensis differ from Sclerocarya drupes because of their typically pentalocular endocarps with large lacunae versus the bilocular to tetralocular endocarps with crescent-shaped lacunae, respectively.
Fig. 3 *Antrocaryon panamaensis* sp. nov. A, B, Holotype (UF60957). A, Endocarp in nearly transverse equatorial section showing a central vascular bundle, five locules, and five lacunae (arrows); note broken lacuna (right arrow). B, Detail from A showing central vascular bundle and radially arranged locules (arrow). C, Transverse section of endocarp showing star-shaped endocarp and radially arranged locules (UF60958). D, Detail of longitudinal section of endocarp showing locules, lacunae, and stopper-like plug (arrow; UF60962). E, Endocarp in more or less longitudinal section showing locule casts (left); arrow indicates cavity in endocarp left by dislodged locule cast (right). Note phalloid distal portion of locule cast in right-side image (UF60959). H–J, Acetate peels from specimen in C showing anatomy. F, Detail of endocarp showing locular envelope and endocarp. G, Detail of endocarp showing dense tissue of interwoven tracts of fibers. H, Detail of endocarp showing possible resin canal (arrow). I, Detail of endocarp showing dark brachysclereids. J, Detail of locule lining showing cell with dark contents. Scale bars = 5 mm (A–E), 400 μm (F), 200 μm (G, H), 50 μm (I, J).
Fig. 4 Digital and volume rendering (VR) and sectional images of early Miocene fruits with locules or opercula highlighted in green. A–E, *Spondias rothwellii* sp. nov. (UF60774). A, VR of endocarp showing five radially arranged locules (arrow). B, Digital equatorial transverse section of endocarp showing ornamentation, five locules, and five lacunae (arrow). C, Digital transverse section showing endocarp ornamentation (lower arrows) and internal bilabiate dehiscence mechanism with two open locular envelopes (upper arrows). D, Digital longitudinal section showing two locules, pores in the endocarp wall (lower arrows), and (T-shaped) apical plate of endocarp located above pores. Note longitudinal row of orbicules. E, Translucent VR of endocarp showing elongate locules and projecting spinelike ornamentation (arrows). F–K, *Dracontomelon montesii* sp. nov., holotype (UF60827). F, VR in lateral view showing apical operculum (arrow). G, VR in basal view showing depression. H, VR showing four out of five reniform locule casts (arrow). I, Digital transverse section at level of opercula showing locules. J, Digital equatorial section showing five locules and filled lacunae (arrows). K, Digital longitudinal section showing locules and operculum (arrow). L–N, *Antrocaryon panamaensis* sp. nov., holotype (UF60957). L, VR of endocarp showing five apical opercula (left arrow) and a whorl of five depressions (right arrow). M, Digital transverse/oblique section at level of opercula (arrows). N, Digital longitudinal section showing three locules and large lacuna on left side of endocarp. Scale bars = 5 mm (A–E, I–N), 2 mm (F–K).
Fig. 5 Extant Anacardiaceae fruits. A, *Spondias tuberosa* (US 2701812: G. Eiten & L.T. Eiten; Maranhao, Brazil) in apical view showing apical pores; note unclosed pore (arrow). B, *Spondias dulcis* (UF 163: P Grote; Thailand) in longitudinal section showing endocarp denuded of spongy tissue; note locule (lower arrow), T-like structure (upper arrow), and conspicuous spinelike ornamentation. C, *Spondias globosa* (NY: Gentry 68,896; Tambopata, Peru) endocarp in transverse section showing central vascular bundle, five locules, and fine lacunae. D, Detail from C showing deer antler–like ornamentation and orbicules (arrow). E, F, *Spondias purpurea* (UF 1435: S. Pell s.n.; Costa Rica). E, Transverse section; note ornamentation (arrow). F, Longitudinal section (left) showing locale with seed, T-like structure (upper arrow), and ventral row of orbicules (lower arrow). Right showing detail from left image; note orbicules. G, *Spondias mombin* (UF 38: Dilcher s.n.; Guanacaste, Costa Rica) in longitudinal section (left) showing locale with seed and ventral rows of orbicules (arrow). Right showing detail from left image; note orbicules. H, *Dracontomelon duperreanum* (UF 2497: Xiaoyan Liu s.n.; Guangzhou Botanical Garden, Guangdong, China); two specimens in apical view showing asymmetrical endocarps and opercula (arrow). J, *Dracontomelon dao* (NY: Soejarto et al. 7822; Luzon, Philippines) in lateral view showing apical opercula and conspicuous equatorial depressions (arrow). I, K, *Dracontomelon dao* (NY: M. Ramos Edano 75,781; Catanduanes, Philippines). I, Transverse section showing five locules and pair of channels connecting equatorial external depressions with lacunae (arrows). K, Longitudinal section showing operculum (upper arrow) and locale with seed (lower arrow). L, *Antrocaryon klaineanum* (NY: J.M. Reitsma 1978; Gabon); left, endocarp in apical view showing five opercula (arrow); right, transverse section showing five locules arranged in a star pattern and five large lacunae (arrow). M, *Antrocaryon amazonicum* (US 2439182: Lemos Fröes 20,295; Pará, Brazil); left, endocarp in apical view with five shed opercula (arrow); right, transverse section showing five locules arranged in a star pattern and five large lacunae (arrow). N, *Antrocaryon amazonicum* (US 3017984: T. Plowman et al. 8823; Pará, Brazil) in longitudinal view showing reniform locale (arrow). Scale bars = 1 cm (A–C, E–N), 5 mm (D).
Comparison with Anacardiaceae Fossils

Spondias. To our knowledge, only one other fossil endocarp has been assigned to *Spondias* in the Neotropical region, that is, *S. lutea* L., described from the Pleistocene of Cuba (Berry 1934; Iurralde-Vinent et al. 2000); living *S. lutea* is a synonym of *S. mombini*. The fossil endocarps appear to have at least two locules and very long lingulate germination valves; unlike any Spondioideae, there is no clear evidence of lacunae or orbicules. It is very likely that the Pleistocene Cuban fossils belong to another angiosperm family (e.g., Humiriaceae), but this needs to be verified with further study. Miki (1941) reported several fossil occurrences as the extant species *S. axillaris* based on endocarps from the Miocene of Japan; since then, this species was transferred from *Spondias* to its own genus, *Chloerospodias* (see also Fu et al. 2017). Several Pliocene fossil leaves from Brazil have also been assigned to *Spondias*, including *S. paez-laurifolia* (Krasser 1903), for which neither a description nor a photograph was presented, and the modern species *S. mirifica* (Hollick and Berry 1924). In our opinion, the affinity of these fossil leaves remains unclear, and a closer examination is needed. Quaternary pollen referred to *Spondias* is very common in quaternary deposits from the Caribbean islands and Central and tropical South America (e.g., Salgado-Labouriau 1980; Leyden 1985; Ferrera et al. 1990; Islebe et al. 1996). From Panama, *Spondias* pollen type (*Anacardiaceae “morenensis”*) has been observed from the Gatún, Cayo Agua, and Tuira Formations (9.6 Ma and younger; Jararillo et al. 2014). The new Miocene species from the Cucaracha flora, *S. rothwellii* (figs. 1, 4A–4E), is the earliest and best-documented fossil evidence of this Pantropical genus described so far.

Dracontomelon. Endocarps of this genus have been reported from the early Eocene London Clay flora (Reid and Chandler 1933). However, those specimens that Reid and Chandler (1933) described as *D. minimus* were later transferred to the extinct genus *Pentoperculum* because of the presence of bipartite germination valves (Manchester 1994). Other specimens attributed by Reid and Chandler (1933) to the fossil genus *Pseudosclerocarya* appear to actually represent *Dracontomelon* (M. E. Collinson and S. R. Manchester, unpublished manuscript; see also Collinson et al. 2016); however, more details are necessary to compare the London Clay specimens with the new Cucaracha flora. Abundant and well-preserved permineralized calcareous endocarps from the late Eocene of Panama (Búcaro Formation; Tonosi flora) were recently described as *D. macdonaldii* (Herrera et al. 2012). These late Eocene fossils are predominantly subglobose, symmetrical, and large (ca. 6.0–12.1 mm high and ca. 9.0–19.2 mm wide), while fruits of the Miocene *D. montesii* (figs. 2, 4A–4K) are oblate to mushroom shaped, asymmetrical, and relatively small (ca. 4.2–7.5 mm high and ca. 5.8–12 mm wide).

Antrocaryon. Three permineralized *Antrocaryon* fossils have been reported from the Miocene (Tiffney et al. 1994) and Pliocene (Bonnelle and Letouzey 1976) of Ethiopia and from the Miocene of Kenya (Chesters 1957). The endocarps of *A. paramicraster* (Miocene) and *A. aff. micraster* (Pliocene) from Ethiopia are much larger than *A. panamaensis* (ca. 19–29 mm high, 23–38 mm wide vs. ca. 9.2–13.1 mm high, 12.5–16.3 mm wide) and also vary from having five or six locules, unlike the exclusively pentalocular Panamanian fossil endocarps. Endocarps of *A. pulchrum* from the Miocene of Kenya are always pentalocular and are similar in size to the new species; however, this fossil differs mainly from *A. panamaensis* by having scattered punctae on the endocarp surface, a feature seen in several extant *Antrocaryon* species from Africa (see Herrera et al. 2018).

Paleoecological and Paleobiogeographic Implications

These early Miocene Cucaracha fossils, *S. rothwellii*, *D. montesii*, and *A. panamaensis*, from the Panama Canal, together with previously described late Eocene fossils from the Búcaro Formation in western Panama, *D. macdonaldii* (Herrera et al. 2012), represent the oldest-known reliable evidence of the Spondioideae in the Neotropics. The natural affinities of the spondioid Cucaracha fossils are also consistent with previous paleoecological interpretations of moist lowland to premontane tropical forests existing during the early Miocene of Panama (e.g., Herrera et al. 2010, 2014; Herrera 2014; Jaramillo et al. 2014). Most extant species of *Spondias* and all species of *Dracontomelon* and *Antrocaryon* are trees of lowland tropical moist/rain forests (Pell et al. 2011; Mitchell and Daly 2015). Only *S. purpurea* and *S. tuberosa* occur naturally in Neotropical deciduous and semiarid forests (i.e., Caatinga arborea in Brazil; Miller and Schaal 2006; Mitchell and Daly 2013), where these species remain leafless during the dry season. Species-specific structures in the roots of *S. tuberosa* and the stems of *S. purpurea* provide water-storing abilities (Borchert 1994) and enable their occurrence in semiarid and seasonally dry environments. Given that drought-adaptive traits are not widespread across *Spondias* and that most species are restricted to tropical lowland moist forests (Mitchell and Daly 2015), as are all species of *Dracontomelon* and *Antrocaryon* (Pell et al. 2011), we infer that the Cucaracha spondioid endocarps are likely to represent moist rain forest species of canopy trees.

The occurrence of rain forest spondioids in the Cucaracha flora adds new woody elements to the early Miocene forests of Panama. Previously described macrofossils have been identified from permineralized wood, fruits, or seed remains. These fossils reveal a complex forest structure that includes canopy-dominant trees such as those of spondioids (this study), *Oreocharis* (Juglandaceae; Herrera et al. 2014), and *Parinari* (Chrysobalanaceae; Jud et al. 2016); woody species of *Mammea* (Calophyllaceae; Nelson and Jud 2017), *Detarioideae* (Fabaceae), *Myristicaceae*, *Meliaceae*, and *Sapotaceae* (Rodríguez-Reyes 2014; Rodríguez-Reyes et al. 2017); lianas, including *Rourea* (Connaraceae; Jud and Nelson 2017), *Vitaceae*, *Icacinaceae*, and *Passifloraceae* (Herrera 2014); and palms, *Zingiberales* (Herrera 2014), and other mid/understory elements such as some members of *Malvaceae* (Byttnerioideae and Malvoideae) and *Eleocarpaceae* (Rodríguez-Reyes 2014; Rodríguez-Reyes et al. 2014). Paleodictis of co-occurring mammals based on δ13C of tooth enamel indicate that early Miocene herbivores fed on C3 plants (MacFadden and Higgins 2004), in agreement with the composition of the Cucaracha flora.

The spondioid fossil fruits from Panama, with their well-preserved morphology and anatomy, and diagnostic characters provide strong evidence for recognizing modern genera and establish a minimum age of 19–18.5 Ma for the appearance of *Spondias* and *Antrocaryon*. Molecular clock-based analyses suggested early
to middle Miocene divergences of these two genera (Weeks et al. 2014). Given that these estimates are similar to the age of the Panamanian fossils, it is likely that molecular-clock approaches are underestimating the true divergence times of Spondias and Antrocaryon from each of their respective sister taxa. The age and occurrence of the spondioid Cucaracha fossils (S. rothwellii, D. montesii, and A. panamaensis) together with the previously described older endocarps from Tonosi (D. macdonaldii; Herrera et al. 2012) corroborate other lines of evidence indicating that long-distance dispersal and local extinctions explain the extant distribution patterns of the family (e.g., Weeks et al. 2014). Spondias includes 18 living species, 10 of which are endemic to Neotropical forests (fig. 6B). Spondias rothwellii is the earliest-confirmed record of Spondias in the Neotropics and indicates that this genus has been in tropical America at least since the early Miocene. Species of Dracontomelon are currently restricted to tropical rain forests of Indochina, Southeast Asia, and east Pacific Islands (fig. 6C), but their fossil records show a much wider distribution during the Neogene. Antrocaryon panamensis is the first and only record of this genus in the Neotropics so far. Most species of Antrocaryon live in tropical rain forests of westcentral Africa, and a single species, A. amazonicum, grows in the Amazon (fig. 6D). Fossil Antrocaryon fruits have also been reported from early Miocene to Pliocene deposits in Ethiopia and Kenya (Ches ters 1957; Bonnefille and Letouzey 1976; Tiffney et al. 1994), indicating a long presence of the genus in the African tropics. The occurrence of A. panamensis and A. amazonicum in the Neotropics indicates one or more instances of long-distance dispersal from Africa into and within the New World forests.

Acknowledgments

We thank Aldo Rincon, Nathan A. Jud, and Oris RodriguezReyes for assistance with fieldwork in Panama; Hongshan Wang for curatorial assistance; and Giovanni Bedoya for nomenclatural suggestions. F. Herrera thanks Benjamin Himschoot for constant support. Funding for this work was provided by the Oak Spring Garden Foundation (to F. Herrera), NSF grant EAR-1829299 (to F. Herrera, M. R. Carvalho, and C. Jaramillo), and the Smithsonian Tropical Research Institute, the Anders Foundation, the 1923 Fund, and Gregory D. and Jennifer Walston Johnson (to C. Jaramillo). We would also like to thank Michael Dunn, Mihai Tomescu, and Ignacio Escapa for the organization and editorial work of this special volume and two anonymous reviewers for their comments.

Literature Cited

Berry EW 1918 The fossil higher plants from the Canal Zone. Bull US Natl Mus 103:1–44.

Montes C, G Bayona, A Cardona, DM Buchs, CA Silva, SE Morón, N Hoyos, DA Ramirez, C Jaramillo, V Valencia 2012a Arc-continent