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a b s t r a c t

Spatial interactions arewidely acknowledged to play a significant role in sustaining diversity in ecological
communities. However, theoretical work on this topic has focused on how spatial processes affect
coexistence of species that differ in their strategies, with less attention to how spatial processes matter
when competitors are equivalent. Furthermore, though it is recognized that models with local dispersal
and local competition may sustain higher diversities of equivalent competitors than models in which
these are not both localized, there is debate as to whether this reflects merely equalizing effects or
whether there is also a stabilizing component. In this study, we explore how dispersal limitation and
nonspecific local competition influence the outcome of species coexistence in communities driven by
stochastic drift. We demonstrate that space alone acts as a stabilizing factor in a continuous space model
with local dispersal and competition, as individuals of rare species on average experience lower total
neighborhood densities, causing per capita reproductive rates to decrease systematically with increasing
abundance. These effects prolong time to extinction in a closed system and enhance species diversity in
an open system with constant immigration. Fundamentally, these stabilizing effects are obtained when
dispersal limitation interacts with local competition to generate fluctuations in population growth rates.
Thus this effect can be considered a fluctuating mechanism similar to spatial or temporal storage effects,
but generated purely endogenouslywithout requiring any exogenous environmental variability or species
dissimilarities.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

In ecological communities where individuals have limited
ability to move (e.g. plants and soil microbes), local spatial
dynamics often play a central role in determining population and
community structure and dynamics (Chesson, 2000a,b; Pacala,
1997; Stoll and Prati, 2001; Turnbull et al., 2007;Webb et al., 2007).
The ecological importance of space hasmotivated the development
of spatially explicit theoretical approaches (Dunning et al., 1995;
Durrett and Levin, 1994; Perc et al., 2013). This includes individual-
based simulation models (on a lattice or continuous space) and
approximate analytical models such as moment equations (Bolker
and Pacala, 1997) and reaction–diffusion equations (Britton, 1986).
Spatially explicit theory has demonstrated the limitations of
spatially implicit competition models and classical neutral theory;
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for example, spatial dynamics can alter the parameter space in
which stable coexistence is possible (Bolker et al., 2003) and lead
to biased estimations and interpretations of model parameters
(Etienne and Rosindell, 2011; Pacala and Levin, 1997).

To date, spatial ecological theory has generated many interest-
ing results on how spatial processes alter niche mechanisms of
coexistence, though little attention has been paid to exactly how
spatial interaction terms matter when competitors are equivalent.
Spatial dynamics have been investigated extensively in models
of resource or apparent competition (Bonsall and Hassell, 2000;
Molofsky et al., 2002; O’Brien et al., 2007; Pacala, 1987), habi-
tat partitioning (Chesson, 2000a,b), competition–colonization and
other life history tradeoffs (e.g. Bolker and Pacala, 1999; Chave
et al., 2002, King and Hastings, 2003), and specialized natural ene-
mies (e.g. Adler andMuller-Landau, 2005; Sedio andOstling, 2013).
It has been recognized that even in the absence of species differ-
ences, spatial localization matters (Hanski, 1981; Slatkin, 1974);
however, there is a dearth of research on how the spatial inter-
action terms affect population and community dynamics in these

http://dx.doi.org/10.1016/j.tpb.2016.08.008
http://www.elsevier.com/locate/tpb
http://www.elsevier.com/locate/tpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tpb.2016.08.008&domain=pdf
mailto:dettom@si.edu
http://dx.doi.org/10.1016/j.tpb.2016.08.008


98 M. Detto, H.C. Muller-Landau / Theoretical Population Biology 112 (2016) 97–108
cases. Models with ecologically identical species are typically ad-
dressed only in the context of null model comparison, where the
focus is on understanding spatial nichemechanisms (e.g. Sedio and
Ostling, 2013).

Surprisingly, there remains a fundamental disagreement as to
whether spatial effects on their own can contribute to stabilizing
species coexistence, or if they are merely equalizing. A mechanism
is said to be stabilizing if it increases intraspecific negative density-
dependence relative to interspecific negative density dependence,
thus leading a species per capita population growth rate to increase
if it becomes rare (Chesson, 2000a,b). In contrast, equalizing
mechanisms reduce fitness differences among species, thereby
slowing eventual extinction, but provide no advantage to a species
when rare nor disadvantage when abundant.

Classical niche mechanisms such as resource partitioning, life
history tradeoffs, and habitat specialization are all well understood
to be stabilizing. Proper understanding of the role of spatial pro-
cesses alone is an important starting point for any quantification
of stabilizing effects of these or other niche mechanisms in spa-
tial models and observations. If local interactions themselves have
stabilizing effects that are not considered, these may confound the
stabilization provided by spatial niche mechanisms.

Local dispersal and competition lead to conspecific aggrega-
tion and species segregation, and thereby increases the frequency
of neighborhood interactions with conspecifics relative to inter-
actions with heterospecifics (Holyoak and Loreau, 2006; Murrell
et al., 2001). By reducing heterospecific competition, these spa-
tial structures could slow ecological dynamics (Hurtt and Pacala,
1995), a finding that hasmotivated the formulation of a segregation
hypothesis. This hypothesis states that ‘‘finite dispersal and spa-
tially local interactions lead to spatial structure that enhances eco-
logical stability (resilience) and biodiversity (Pacala, 1997)’’.

However, it is possible for local aggregation of a species
to accelerate exclusion and reduce the parameter space where
coexistence occurs (Chesson and Neuhauser, 2002; Neuhauser and
Pacala, 1999). Similarly, in models of invasion, spatial structures
and life-history tradeoff play a central role in determining the
outcome of an invasion, but intraspecific competition intensifies
so much that competitive dynamics are actually faster than in the
nonspatial case (Bolker and Pacala, 1999).

It is unclear if these mechanisms are expected to have larger
effects among similar competitors, and therefore to be particularly
important for spatially explicit neutral communitymodels. Analyt-
ical approximations derived by spatial stochastic processes, which
describe the average population dynamics, have shown that asym-
metry in conspecific and heterospecific interaction scales is neces-
sary to achieve stable coexistence of otherwise equal competitors
(Murrell and Law, 2003).

It is important to note that the presence of conspecific
aggregation and heterospecific segregation alone, which emerge in
many simulations, is not a sufficient condition for stabilization. In
neutral lattice models in which all cells are occupied, for example,
total neighborhood densities of conspecifics plus heterospecifics
remain invariant even though conspecifics are highly clustered,
and in this case there can be no stabilization as all individuals
experience equal local competition. In such models spatial
structures could enhance coexistence by reducing potential rate
of change in abundance of species, i.e. reducing the stochastic
drift. This mechanism acts in a similar manner of an equalizing
mechanism (Chave et al., 2002; Neuhauser and Pacala, 1999), even
though the definition of equalization does not apply well here
because all species are identical, so fitness differences cannot be
reduced.

In continuous systems with local dispersal and competition,
spatial structures continuously form and dissipate (Detto and
Muller-Landau, 2016). These spatiotemporal dynamicsmay gener-
ate covariance between local population densities and population
growth rates, for example, isolating individuals of species that are
at low abundance and in danger of drifting to extinction. Such tem-
porary spatial refugia alleviate competitive pressure and increase
the probability that these species recover from rarity. Although
spatial segregation is unlikely to be permanent, it could last long
enough to significantly affect population dynamics, but the extent
of its potential contribution to species persistence has not yet been
investigated (Holyoak and Loreau, 2006). If these mechanisms cre-
ate an advantage for the less abundant species, they should be clas-
sified as stabilizing, like temporal or spatial storage effects, but
without invoking any differences among competitors or extrinsic
environmental variation (Bertuzzo et al., 2011).

Here, we test the segregation hypothesis by thoroughly in-
vestigating how local dispersal and local non-specific negative
density dependence impact coexistence of equivalent competitors
in model communities. The model under examination is a point
process in continuous space where individuals disperse offspring
according to a dispersal kernel and have a rate of mortality de-
pendent on neighborhood density. Although extremely simplified,
these models are able to generate a wide variety of spatial pat-
terns consistent with mapped species distribution of large tropi-
cal forest plots (Detto and Muller-Landau, 2013). We show how
the spatial structure in these models develops such that there are
systematic differences with focal species abundance in neighbor-
hood densities of conspecifics and heterospecifics, and how this in
turn translates to stabilization as evidenced by negative density-
dependence (i.e., a rare species advantage). We explore the full
parameter space which differentiates our model from the clas-
sic analytically tractable neutral model – i.e., varying dispersal
distance, interaction strength and interaction range – and show
how these parameters affect time to extinction in the 2-species
closed system (Gandhi et al., 1998) and species diversity in the
multi-species open system, two classic cases investigated in neu-
tral theory (Beres, 2005). We also examine the effects of local com-
munity size and metacommunity species diversity, and evaluate
the robustness of our results to the zero-sum assumption. This
study complements the rich existing literature on spatially explicit
ecologicalmodels, constituting an intermediate and necessary step
towards fully understanding how niche mechanisms function in
communities where individuals have limited mobility.

2. Methods and theory

2.1. Model description and simulation methods

We first consider a closed system of N individuals and
two ecologically equivalent species. Parents disperse offspring
according to a dispersal kernel and individual survival is a linear
negative function of local density weighted by an interaction
kernel, as defined below. The total number of individuals is
constant, meaning that for each death there is a birth (zero-sum
game). There is no immigration. The system reaches an absorbing
state when one of the two species goes extinct.

In the second case study, we consider a variant of the previous
model in which immigration is allowed with rate ν from a
metacommunity with S species. For simplicity, the S species are
equally abundant in themetacommunity (hence an immigrant has
equal probability of being any one of the S species). As before, the
system has N individuals, all species are ecologically equivalent,
dispersal follows a dispersal kernel, and survival is a negative
function of local density of all individuals.

We simulate these cases as point processes with N individuals
on a square arena of area A, with periodic boundary conditions to
minimize edge effects. Every birth event or immigration is paired
with a death event such that the total number of individuals is
maintained constant. For every death event, an individual is chosen
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to die with a probability that depends on its neighbor density.
Specifically, for each individual j, time to death is drawn from a
random exponential distribution with rate

µj = 1 + α

k≠j

K(djk), (1)

where K is a quadratic kernel with finite range LK ; and djk is the
distance between the focal individual j and the neighbor k; then,
the individual with the shortest death time is removed. For birth,
a parent, chosen at random disperses an offspring according to a
Gaussian kernel with parameter LD. In the open system, the birth
is an immigrant placed at random with probability ν, and the
offspring of a parent as before with probability 1 − ν. A total of
N deaths and N births constitutes one generation time.

Initially, all N individuals are placed at random. Then the mod-
els are run for an initial spin-up period to allow spatial structure to
form and stabilize (initial transient time). For the closed system, in-
dividuals are initially randomly marked as species 1 or species 2 in
a fixed proportion (initial state). Then, during the spin-up, each in-
dividual that dies is replacedwith an individual of the same species
to maintain the number of individuals per species constant. The
spin-up is ended after spatial structures are fully formed (usually
5–10 generation times). For the open system, the identity of an in-
dividual is randomly chosen from a pool of S species, and the rules
for birth, death and immigration during the spin-up are the same
as those employed thereafter. The spin-up period is continued un-
til after the number of species reaches an equilibrium at which
stochastic extinction is balanced by immigration and spatial statis-
tics are no longer changing directionally. In practice, we used a
spin-up time of 200 generation times for the open system (see sup-
plementarymaterial for a theoretical demonstration that this spin-
up time is more than adequate for our parameter values, Fig. 9).

2.2. The parameter space explored

Only three basic parameters make the difference between this
spatial model and the classic spatially implicit case of Hubbell
(2001): interaction strength, α, which describes the negative
influence of neighbor density on the focal individual (excluding
self-interaction); dispersal distance, LD, defined as the standard
deviation of a Gaussian kernel; and interaction range, LK , which
is the width of a quadratic kernel representing a weighted
function of distances among two interacting individuals (to make
comparisons between kernels more meaningful, interaction range
LK ismultiplied by

√
6 to obtain an equivalent Gaussian smoothing,

as in Detto and Muller-Landau, 2013). The mean density of
individuals is N/A, which we set equal to 1 in all our simulations.

There are four asymptotic cases under which there are no
spatial effects on mortality and fecundity rates: (i) LD → ∞, (ii)
LK → 0, (iii) LK → ∞ and (iv) α → 0. In these cases, all species of
all abundances have the samemean per capita growth rate and the
mean time to extinction and relative species abundances should
converge to those of the nonspatial cases.

We varied LD between 1/2 and 2, the distances which are half
and twice as long, respectively, as the mean spacing between
individuals in our simulations (Fig. 8). LD = 2 was sufficiently
large to approach the first asymptotic case. Because, as shown
later, this model is less sensitive to LK , this parameter needed
to be varied on a larger range (between 1/32 and 8) in order to
approach the asymptotic limits ii and iii. The parameter α also
has a natural upper limit, because when αN ≫ (E[K(d)])−1,
the mortality probability of each individual depends strongly on
neighborhood density, but becomes insensitive toα.We quantified
time to extinction in the closed system for all combinations of
LD =

1
22

(0,1,...,24)/8, LK =
1
322

(0,1,...,48)/6 and α =
 1
4 ,

1
2 , 1, 2


.

We quantified species diversity in the open system for the same
values of LD and LK , together with α ∈ (1, 2, 4, 8). Each parameter
combination was replicated 250 times.

Time to extinction and species diversity both increase with
increasing community size, N , while the spatial effects we explore
are qualitatively similar regardless of community size (with the
exception of communities so small that spatial patterns cannot
develop). Here, we used N = 50 in our investigation of the
effects of spatial parameter combinations on time to extinction in
the closed system, and N = 200 in our investigation of species
diversity in the open system. Time to extinction in the closed
community without spatial effects depend on community size and
initial state i as

Ti =

i
j=1

N − i
N − j

+

N−1
j=i+1

i
j

(2)

(Watterson, 1961), motivating the smaller community size in our
simulations of this case. For the open community, we further
evaluated the effects of local community sizeN , varying it between
30 and 10000. In order to make comparison among simulations
with different community size easier, the area Awas set equal to N
in all cases.

The open community has two additional parameters not
present in the closed community case: themetacommunity species
richness, S, and the immigration probability, ν. Because these are
not spatial parameters we do not investigate them systematically
and we employ S = 200 and ν = 0.1 in our comprehensive inves-
tigation of spatial parameter effects on diversity. We specifically
explore how S impacts species abundance distributions and spatial
effects on diversity by comparing S = 200 and S = 20 for a model
N = 1600 and ν = 0.01. We explore the effect of system size, N ,
under small and large metacommunity species richness (S = 100
and S = 1000).

2.3. Quantifying spatial effects in the simulations

We quantified spatial structure and its variation with local
abundance in simulations using Ripley’s K (Ripley, 1976). In
particular, we calculated the average density of conspecific
neighbors and of heterospecific neighbors within distance 2LD
from focal individuals. We computed Ripley’s K for every species
after the burn-in, at the end of each iteration (after birth and death
events are simulated) and recorded this along with information on
the species’ abundance. We then averaged statistics by abundance
to investigate systematic variation in spatial structure with focal
species abundance. We investigated three spatial cases and the
nonspatial case of the closed system to illustrate how rare species
benefit from reduced crowding in the spatial models.

We quantified variation in population growth rates with
abundance in the same cases of the closed system, as well as in
example cases of the open system, using the basic reproductive
number, R0, the average number of offspring produced over the
lifetime of an individual. The basic reproductive number is defined
as fecundity, λ, divided by mortality, µ. In our model, per capita
fecundity rates λ are equal for all individuals and total abundance
is constant, hence, at each realization k, Nλk =


j µjk, where µjk

is the mortality rate of the j individual in the kth realization. Thus,
themean basic reproductive number of a specieswith i individuals,
R0i, can be computed as the ratio between the mortality rate of
the whole community and the mortality rate of a species with i
individuals:

R0i =
E


µj|si > 0


E


µj|nj = i

 (3)
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where nj is the number of individuals having the same species
identity as individual j. Let njk denote the abundance of the species
of the jth individual in the kth realization, and sik the number of
species with i individuals. Then R0i is estimated as

R̂0i =


j, k

µjk
k

N
j∈njk=i, k

µjk
k

i sik

=


k
i sik

kN


j, k

µjk
j∈njk=i, k

µjk
, k ∈ sik > 0. (4)

The summations are carried out for all realizations k where at
least one species with i individuals is present. It is easy to show
that the integration of 1/R0i over the whole community gives one,
since the total population is constant. If there are no interactions
(α = 0 and/or LK = 0) or interactions are global (LK = ∞), µj
is constant for all j and R0i = 1 by definition. More generally if
E


µj|nj = i


= E


µj


, R0i = 1.

Wemeasured the impact of spatial effects on time to extinction
in the closed system by quantifying the mean time to extinction
(after the burn-in period) in 250 replicate simulations when
startingwith equal numbers of individuals. For the nonspatial case,
the time to extinction can be calculated analytically (Appendix A).

In the open system, we measured impacts on relative species
abundance distribution and species diversity.We quantified diver-
sity using the Hill number or number of equivalent species (Hill,
1973), with q = 1, computed as

N
i=1 (i/N)−si i/N . We computed

abundance distributions and species diversity as ensembles from
the species abundances sampled every 5 generations for 250 gen-
erations. In the nonspatial case, the abundance distribution and
thus the diversity can be obtained analytically (Appendix B).

We investigate the invader advantage by comparing the
mortality rate of a new immigrant with the mortality rate of
singletons already present in the local communities, for several
parameters combinations.

2.4. The emergent dependence of mortality rates on conspecific
abundance

In our model, mortality is dependent on the local densities of
heterospecifics and conspecifics, with equal effects in all species,
while fecundity is density-independent (equal for all individuals).
Aswewill show, themortality rateµ varies systematicallywith the
number of conspecifics iwhendispersal is local. (The opposite case,
where fecundity is density-dependent, can be studied in a similar
manner and has similar behavior.)

The mortality rate of a focal species X with i individuals can be
divided into three components: a density-independent component
(fixed arbitrarily at 1), a component representing effects of
conspecific interactions (individuals of the focal species X), and
a component representing effects of heterospecific interactions
(individuals of all species other than X). This can be expressed as

µX = 1 + α
1
i


j∈X


k≠j,k∈X

K(djk) + α
1
i


j∈X


k∉X

K(djk) (5)

where α is the strength of the interaction, djk is the distance
between the focal individual k and the neighbor j, and K is an
interaction kernel with finite range Lk. The condition k ≠ j is to
exclude self-interaction. Using conditional expectations, (5) can be
rewritten as

µX = 1 + α(i − 1)E

K(djk)|k ≠ j, IDj = IDk = IDX


+ α(N − i)E


K(djk)|IDj = IDX , IDk ≠ IDX


(6)
where ID denotes species identity. In the presence of intraspecific
aggregation and interspecific segregation it is reasonable to
assume the following inequality:

E

K(djk)|k ≠ j, IDj = IDk


> E


K(djk)|IDj ≠ IDk


. (7)

Inequality (7) expresses the fact that pairwise distances between
conspecific are on average smaller than distances between
heterospecifics. In particular, for a singleton in a two-species
community with N individuals we have

µ1 = 1 + α(N − 1)E

K(djk)|IDj ≠ IDk


(8)

which, in virtue of inequality (7), is smaller than

µN−1 = 1 + α(N − 2)E

K(djk)|j ≠ k, IDj = IDk


+ αE


K(djk)|IDj ≠ IDk


.

(9)

Although approximate solutions have been proposed for spatially
explicit Lotka–Volterra models (e.g. Adler and Muller-Landau,
2005; Bolker and Pacala, 1997; Neuhauser and Pacala, 1999), a
closed expression for the conditional expectations is not known.
Furthermore, instantaneous rates deviate from expected values for
finite population size, since they depend on the exact locations
of the individuals at a specific point in time. To understand how
mean time to extinction and diversity change as function of model
parameters, we thus rely on computer simulations.

3. Results

The net impacts of conspecific aggregation and heterospecific
segregation in the spatial model vary systematically with the focal
species abundance in the closed two-species community (Fig. 1(A),
(B)). Rare species suffer less from conspecific aggregation and
benefit more from heterospecific segregation than do common
species, and thus experience higher basic reproductive numbers
in the spatial model, but not in the nonspatial model (Fig. 1(C)).
The two species have equal probability to gain or lose an individual
when they have equal relative abundance (0.5). When a species
becomes rare, it gains a demographic advantage that provides it
with a chance to recover, and that advantage increases with the
strength of local interactions (Fig. 1(C)).

Consistent with this rare species advantage, mean time to
extinction in the spatial model of a closed two-species community
was substantially longer than for the corresponding nonspatial
model (Fig. 2). For the nonspatial case, mean time to extinction in
simulations agreed well with the analytical solution obtained for
birth and death rates independent of species relative abundance
(Eq. (2)), with time to extinction depending only on system size
and initial state (Fig. 2, red points vs. red line). The spatial case
shows a similar dependence on initial state, but mean time to
extinction is significantly longer whenever parameters are such
that substantial spatial aggregation and segregation develops
(e.g., Fig. 2, blue points). All spatial parameters influenced the
degree to which extinction times were extended in the spatial
model (Fig. 3). Extinction times were prolonged by shorter
dispersal distances, more intense negative density-dependence
(higher α), and interaction ranges between 1/2 and the dispersal
distance.

The multi-species system with immigration exhibits qualita-
tively the same pattern of rare species advantage in basic re-
productive number (Fig. 4, top). The basic reproductive number
declines with increasing relative abundance, crossing one at a rela-
tive abundance equal to the inverse of expected number of species
for those parameters. In this system, rare species can arise not only
from common species that have declined, but also as immigrants.
Immigrant seeds have a greater probability to land in low-density
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Fig. 1. Conspecific aggregation, heterospecific segregation, and basic reproductive number vary systematically with focal species abundance in the closed two-species
system under local dispersal and competition (N = 30, LD = LK = 1/2), compared with the nonspatial case (black dashed lines). (A) Conspecific aggregation is higher in the
cases with local dispersal than in the nonspatial case, and the increase in aggregation is greater for common species than for rare species. (B) Heterospecific segregation is
stronger (lower local heterospecific density) in the caseswith nonzero local competition than in the nonspatial cases, with rare species benefitingmore from segregation than
do common ones, as they experience a greater reduction in local heterospecific density. (C) The net effects of the changes in conspecific and heterospecific neighbor density
are that species benefit from lower total neighborhood density when rare, such that the basic reproductive number (average offspring produced per individual) declines
with increasing relative abundance. Note that increasing the strength of local competition (α) reduces conspecific aggregation and increases heterospecific segregation, with
a net strengthening of the spatial effect of density-dependence. Neighbor density (A, B) is measured as the density of individuals within distance 1 from focal individuals.
areas than residents’ seeds. As a result, invader reproductive num-
bers are elevated above one and increase with interaction strength
(Fig. 4, bottom). The advantage of the invader is also increased un-
der conditions of greater aggregation such as those that develop
under shorter dispersal (Fig. 4, bottom).Whenwe remove the zero-
sum constraint and allow the density of individuals to be deter-
mined by the balance of births and deaths, the pattern of basic
reproductive number declining with increasing abundance re-
mains qualitatively unchanged (Appendix C).

Species diversity in the spatial multi-species model with
immigration was higher than in the parallel nonspatial model
(Fig. 5). Diversity was higher for shorter dispersal distances,
higher interaction strength, and interaction ranges between 1/2
and the dispersal distance (Fig. 5). These patterns of variation are
qualitatively the same as those found for extinction times in the
closed system (compare Figs. 3 and 5). Abundance distributions
also differed. The spatial model exhibits a reduction in dominance
(fewer very abundant species) and an increase in the number
of species of intermediate abundance relative to the nonspatial
model Fig. 6. The effect on species abundance distributions
depended also on the size of themetacommunity: for species-poor
metacommunities, but not species-rich ones, spatially localized
interactions greatly reduced rarity.

For a given immigration rate, the diversity enhancement
due to local interactions becomes weaker as the size of the
local community increases Fig. 7. For local communities that
are relatively small compared to the regional species pool, the
increased diversity is independent of regional pools. For relatively
larger local communities (N ≫ S), the differences between the
spatial and nonspatial cases vanish as the limit imposed by the
regional pool is reached.

4. Discussion

Our results clearly show that the segregation effect (Pacala
and Levin, 1997; Pacala, 1997) stabilizes coexistence of equivalent
competitors in continuous space models with spatially localized
Fig. 2. In a closed two-species community,mean time to extinction of one species is
higher in a spatialmodelwith local dispersal and local density-dependentmortality
(blue circles) than in a nonspatial model (red circles; red line is the analytical
solution). Species are ecologically equivalent in both models; in the spatial case,
individuals have limited dispersal and local interactions (with identical effects of
and on conspecifics and heterospecifics). Means were taken over 1000 simulations
with a system size N = 100. Parameters of the spatial model LD = LC = 1/4 and
α = 5. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

dispersal and competitive interactions, even when competitive
effects and responses are entirely generalized (species identity of
individuals does not matter). Such generalized interactions can
arise if the species compete for the same resources or share a
common enemy (apparent competition). The basic reproductive
number declines with increasing abundance in the spatial model
unequivocally demonstrates that the aggregation–segregation
mechanism qualifies as stabilizing (Chesson, 2000a,b). The results
are robust to the zero-sum assumption and are applicable to
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Fig. 3. The ratio of mean time to extinction in the spatial model to that in the nonspatial case varies with interaction range (LK , x axis), dispersal distance (LD , y axis), and
interaction strength (α, panels). Extinction time in the spatial model increases with shorter dispersal distance, stronger interaction strength, and interaction ranges between
1/2 and the dispersal distance. Means were taken over 250 simulations with system size N = 50 and initially equal abundances of both species. The diagonal line indicates
the parameter combinations for which interaction range equals dispersal distance.
Fig. 4. (Left) The basic reproductive number R0i declines as a function of relative abundance in the multispecies system with immigration, with steeper declines for higher
interaction strengths α (lines). The dots indicate the reproductive number when all species have the same relative abundance. Reproductive numbers are computed using
300,000 realizations after burn-in time with N = 30, LD = LK = 1/2, S = 5, ν = 0.05. (Bottom) (Right) Invader’s advantage increases with local interaction strength,
and dispersal limitation of the residents. Other parameters are N = 30, S = 5, ν = 0.05. Invader’s advantage is defined as the ratio between average mortality rates of a
singleton resident species and an immigrant before it generates an offspring. Mortality rates are computed using 300,000 realizations after burn-in time.
models where total number of individuals change with time,
e.g. logistic processes (see Appendix C for an example).

Maximum stabilization is achieved with high dispersal limi-
tation and with strong interactions at comparable (hence short)
scales. Although variation in interaction range has less influence
than variation in dispersal distance, it is notable that the scales
of these two factors interact. If dispersal is large compared to the
simulated arena, individuals are placed at random and the neigh-
bor densities are uncorrelated with focal individual identity. Simi-
larly, if interaction range is large compared to the simulated arena,
neighbor density equals mean field density for all individuals, in-
dependently of identity. On the other hand, if interaction range is
small compared to dispersal and mean spacing among individuals,
individuals do not interact with neighbors and mortality is deter-
mined by density-independent factors. The two cases examined,
the closed and open systems, are analogous, and produce funda-
mentally consistent conclusions. The key distinction is that in the
open local community, immigrants enter randomly, i.e., as if dis-
persed long distances. This gives an additional advantage to immi-
grants that can land in unoccupied areas that are temporarily out of
reach of residents, thus increasing the average rare species advan-
tage. This is consistent with analytical results of Bolker and Pacala
(1999) and Murrell (2010).

The effects of spatially localized interactions on diversity
vary with immigration, highlighting the importance of regional
richness for these types of spatial neutral interactions. For rich
regional species pools, the diversity-enhancing effect of local
interactions is achieved by a reduction in relative abundance of
the dominant species. These individuals are redistributed into
lower abundance classes, naturally increasing the species of
intermediate abundance. The number of rare species, in contrast,
remains relatively unchanged. This is because the fast rate of
immigrants from the rich regional pool is compensated by the
greater advantage of rare species due to spatial dynamics. In
contrast, for communities embedded in poor regional species
pools, there is a stronger reduction in the number of rare species
because the advantage of being rare is not compensated by a
continuous immigration of new species. Analogously, species–area
curves saturate when the community size becomes large enough
to include the whole regional species pool, with the consequence
of minimizing locally stabilizing effects in general, including the
spatial effects addressed here.
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Fig. 5. In the multi-species community with immigration, the ratio of species diversity in the spatial relative to that in the nonspatial model varies with interaction range
(LK , x axis), dispersal distance (LD , y axis), and interaction strength (α, panels). Diversity in the spatial model increases with shorter dispersal distance, stronger interaction
strength, and interaction ranges between 1/2 and dispersal distances. Diversity is calculated as the Hill number of equivalent species (see Methods). Means were taken over
250 simulations with system size N = 200, metacommunity size S = 200, and immigration rate ν = 0.1. The diagonal line indicates the parameter combinations for which
interaction range equals dispersal distance.
Fig. 6. Species abundance distributions for simulated communities with local dispersal and interactions (blue bars) deviate systematically from analytical solutions for
nonspatial communities (red dots and lines, Eq. (8)), with different deviations for the cases of large (left) and small (right) metacommunities. Abundance distributions are
presented as numbers of species in doubling classes of abundance (aka Preston plot). Model parameters: N = 1600, LD = LC = 3/4, ν = 0.01, α = 10. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
4.1. Understanding stabilization due to the aggregation–segregation
effect

The stabilization observed in the continuous space models in-
vestigated here is due to the combination of conspecific aggre-
gation and interspecific segregation, which are not completely
compensatory in continuous space models (Bolker and Pacala,
1999). The stabilization emerges in a dynamical way through
continuous formation and dissipation of spatial structures (Detto
and Muller-Landau, 2016). Formation of spatial structures occurs
where reproduction is successful, but dispersal is limited, leading
inevitably to the formation of dense clusters.

Dissipation of spatial structures occurs because negatively
density-dependent mortality erodes dense clusters. In these
models, individual species abundances fluctuate like a biased
random walk, bounded from 0 to N . Conspecific neighborhoods
around survivors of a species that has experienced negative drift
are relatively less dense (due to dissipation of spatial structures).
Because species are segregated, the net effect is that less abundant
Fig. 7. Effect of system size (number of individuals in the local community), on the
difference in diversity between the nonspatial (thin dashed lines) and spatial (filled
circles and thick solid lines) cases under relatively small (green) or large (blue)
regional species pools. For the nonspatialmodel, the analytical solutions are shown;
the spatial cases are simulation results (points, means over 250 simulations).
Parameter values: LD = LC = 1, ν = 0.01, α = 10. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 8. Examples of simulations of the open systemafter the end of the burn-in time (N = 200). Different spatial patterns are obtainedwith different dispersal and interaction
kernels (short dispersal/interaction LD = LK = 1/2 and long dispersal/interaction LD = LK = 2) and interaction rates (weak interaction α = 1/2 strong interaction α = 2).
Each color represents a different species (colors are repeated every 7 species). The inner and outer circles enclose 50% and 95%, respectively, of the dispersal and interaction
kernels, with red indicating the dispersal kernels and blue the interaction kernels.
Fig. 9. Expected time (generations) to reach steady state species richness
(normalized by steady state richness) in a local community with immigration
for different parameter of the nonspatial model. Transient solutions are obtained
integrating Eq. (7) with solution for steady state as Eq. (8) and initial condition of
equally abundant species.

species are subjected to relatively less local competition. In
contrast, individuals of a species that has experienced positive
drift will have on average denser neighborhoods (due to the
formation of spatial structures), with a net effect of increased
local competition. Essentially, when dispersal and competition are
spatially localized, spatial patterns and abundance change over
time in such a way that spatial statistics covary systematically
with abundance (Fig. 1). This mechanism can also be thought of
as generating a kind of spatial refugia, i.e., locations where relict
populations of once more widespread species remain isolated,
favoring persistence of these species after their extinction in
surrounding areas. This phenomenon cannot arise in latticemodels
in which all cells are always filled, as the total densities of
neighbors remains constant regardless of abundance in such
models.

In the past, it has been argued that the effect of local dispersal
and interactions in elevating diversity (e.g. Chave et al., 2002)
is never a stabilizing mechanism, that it merely slows drift to
extinction rather than really creating stable coexistence (Chesson,
2000a,b). However, in finite, stochastic communities without
immigration, virtually all niche mechanisms ‘‘merely’’ slow drift
to extinction. The crucial distinction of a stabilizing mechanism is
that it elevates a species’ per capita growth rate when it becomes
rare, tending to aid recovery (stochastic boundedness), and thus, a
stabilizing effect is evident here.

Chesson (2000b) distinguished three main categories of sta-
bilizing mechanisms: fluctuation-independent mechanisms, those
involving nonlinearity of competition, and storage effects in space
or time. The mechanism studied here is a fluctuation-dependent
mechanism, because it depends on spatiotemporal variability in
population density which covaries with growth rates: the differ-
ences in densities among patches disproportionally affect mor-
tality in the patches (similar results would be obtained if NDD
instead affected fecundity or establishment). However, there are
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two important differences between traditionally defined fluctu-
ation mechanisms (e.g. the storage effect) and the spatial segre-
gation effects seen here. First, fluctuations in population density
are generated not by exogenous spatial or temporal environmen-
tal variability, but by endogenous stochastic demography. Second,
there are no species-specific responses to the environment; all
species are equivalent in their responses to neighbors.

4.2. Relationship to previous studies

Previous studies of continuous spatial models have focused
on asymmetric cases in which conspecifics exert more negative
neighborhood effects than heterospecifics, generally inspired by
models of specialized natural enemies (e.g. Adler and Muller-
Landau, 2005; Sedio and Ostling, 2013). Some of these papers
nonetheless provide analytical or simulation results on models
with nonspecific interactions as well.

Bolker and Pacala (1999) analyzed continuous spatially explicit
Lotka–Volterra models, the same general type of models used
in Murrell and Law (2003) and in our study, except that in
their case density-dependence affected establishment rather than
mortality, and the shape of dispersal and competition kernels are
qualitatively different. They analytically derived invasion criteria
for the spatial model as a function of spatial and nonspatial
parameters. These criteria have the general form that the invasion
rate is equal to the nonspatial invasion rate (zero for equivalent
competitors) plus a term for the resident’s aggregation, minus a
term related to the invader’s aggregation, and plus a term for
resident–invader segregation (Eq. 6 in Bolker and Pacala (1999)). A
randomly placed invader initially has zero conspecific aggregation
and zero heterospecific segregation, and thus the spatial invasion
growth rate reduces simply to a positive term for the aggregation
of the resident in the case of equivalent competitors. Similar
results were obtained by Murrell (2010) for the case of invasion
into a resident population with spatial structure. These analytical
results are consistent with our finding of stabilizing effects of
the aggregation–segregation mechanism in continuous spatial
models. In contrast, the analytical results of Murrell and Law
(2003) suggest that asymmetries in interaction ranges between
conspecifics and heterospecifics NDD are a necessary condition
for space alone to mediate coexistence. Our results are obtained
with a symmetric competition kernel in which conspecific and
heterospecific interaction distances and strengths are equivalent,
and thus fall on the boundary between stably coexisting and
bistable states, according to the analysis ofMurrell and Law (2003).

Previous simulation studies of continuous spatial models also
present some relevant results. Sedio and Ostling (2013) focus on
how the degree of specialization in natural enemies influences
species richness, and present models with completely generalist
natural enemies (i.e., nonspecific neighborhood interactions) for
comparison. Their results show that under multiple parameter
combinations, models with generalist natural enemies support
higher diversity than neutral models lacking spatial processes
(their Fig. 3(a), S1a). Adler and Muller-Landau (2005) focus on
how spatial scales of dispersal and conspecific interactions affect
species richness, but also present results for different scales of
heterospecific interactions. Simulations with short seed dispersal
distances and short heterospecific interaction distances havemuch
higher species richness than those with longer dispersal and
interaction distances (their Table 2).

4.3. Directions for future research

Future research could usefully expand on the present work
through extension of the spatially explicit model to the metacom-
munity, extension tomore complex interactions (Perc et al., 2013),
and analytical results for these models. The results presents above
are restricted to unstable coexistence problems of neutral commu-
nities in continuous space. Different model formulations may not
generate stabilizing effects and in models with species differences
some spatial structures may even reduce the parameters space
where stable coexistence occurs (Neuhauser and Pacala, 1999) or
accelerate exclusions (Bolker and Pacala, 1999). For example we
have already noted that a lattice neutral model without empty
space does not produce local density fluctuations, thereby ex-
cluding the possibility of fluctuation-dependent stabilizing mech-
anisms.

The current model explicitly represents spatial interactions
within the local community, but relies on a spatially implicit
approach to immigration from the metacommunity. A complete
spatial explicit modeling of metacommunity and local community
should represent immigration as dispersal from a limited area
in proximity to the local community. This would reduce lead
to nonrandom sampling of the metacommunity (Hubbell, 2001)
and nonrandom placement of immigrants. Nonrandom sampling
of the metacommunity would cause the local community t a
smaller metacommunity. Nonrandom placement of immigrants
wouldmean that immigrants are likely to have conspecifics nearby
(even if just over the ‘‘border’’ of the local community), reducing
the invader advantage (Chisholm and Lichstein, 2009; Ostling,
2012). Both factors would lead to a reduction in species richness.
Essentially, this approach requires explicitly simulating the entire
metacommunity itself, a task that obviously depends greatly upon
available computing power.

It would also be useful to extend this model to more
complex interactions involving multiple trophic levels, such as
host–parasitoid interactions. This would elucidate the role of
spatial effects in competition among species with a common
(generalist) enemy (Bonsall and Hassell, 2000; King and Hastings,
2003). The crucial difference from neighborhood competition
models such as the ones employed here is that natural enemies
do not respond instantaneously, and thus dynamics exhibit lags
that affect the rates at which spatial structures form and dissipate
(Detto and Muller-Landau, 2016).

Finally, there is a strong demand for analytical treatment of
this problem (Harte et al., 2008; Holyoak and Loreau, 2006). One
possibility is to use spatial moment equations to express per capita
population rates as sum of nonspatial and spatial components,
where the latter are dependent on the spatial covariance and
the interaction kernel (Bolker and Pacala 1999). However, in
moment equations, as well as in reaction–diffusion equations,
some properties of the discreetness of the system cannot yet be
easily incorporated. For examples, even if the spatial moments are
known analytically and the expectedmortality and fecundity rates
are resolved, the finite stateMarkov chain cannot be implemented.

5. Conclusions

While theoretical investigation of the deviation from neutral
theory in spatially explicit models has focused on the importance
of niche mechanisms, relatively less attention has been given to
neutral spatial mechanisms. Here, we demonstrated that, in con-
tinuous space models, spatial interactions, even when completely
non-specific, can modify classic results for communities driven
by ecological drift, because they introduce a stabilizing mecha-
nism. The aggregation–segregation effect described here is perva-
sive across several orders of magnitude in local community size,
suggesting that many different natural ecosystems may be in-
fluenced by such mechanism. Because neutral local interactions
may have significant effects on the dynamics of the system, these
effects needs to be parsed out first whenever spatially explicit
models are investigated to quantify stabilizing contributions of
particular niche mechanisms.
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Appendix A. Analytical treatment of the mean time to extinc-
tion in a closed two-species community

The closed two-species community is a Marcovian process
described by the vector p(x) = (p1(x), p2(x)), where pi(x) =

k δ(x − xik) is the spatial density function of species i, whose
individuals are situated at spatial locations xik.

If spatial locations do not matter, the possible states of the
system reduce to a vector indicating the number of individuals of
one of the two species. For example, i is the state in which the focal
species has i individuals and the other species hasN−i individuals.
In this case the,mean time to extinction can be analytically derived
from the transition matrix of the Markov chain model P, where Pij
represents the one-step transition probability of going from state j
to state i:

P =



1 0 0 0 · · · 0
P10 P11 P12 0 · · · · · ·

0 P21 P22 P23 · · · · · ·

...
...

. . .
. . .

. . .
...

· · · · · · · · · PN−1,N−2 PN−1,N−1 PN−1,N
· · · · · · · · · 0 0 1

 (A.1)

Note that 0 andN are absorbing states. Defining λi andµi as the
per capita reproduction andmortality probability of a species with
i individuals, the transition probabilities are expressed as

Pi,i−1 = (1 − λii) µii
Pi,i = λiiµii + (1 − λii)(1 − µii)
Pi,i+1 = λii(1 − µii).

(A.2)

The mean time to extinction depends on the initial state of the
system and is computed as

T = (I − Q)−11. (A.3)

Q is the N − 1 × N − 1 matrix of the transient states (the
submatrix in Eq. (1)), I, the identity matrix, 1, a vector of ones,
and T is in units of generations (Taylor and Karlin, 2010). As we
see, once the per capita fecundity and mortality probabilities are
known for each state, the problem simply reduces to the inversion
of a tridiagonal matrix.

If there are no local spatial interactions, each individual has the
same mortality and fecundity, regardless of species, hence λi =

µi = 1/N and an explicit solution can be written as

Ti =

i
j=1

N − i
N − j

+

N−1
j=i+1

i
j

(A.4)

Watterson (1961). Eq. (A.4) shows that themean time to extinction
depends only on system size, N , and the initial state, i. However,
when local interactions are allowed to play a role, solutions
may depend not only on mean field quantities (total number of
individuals), but also on the spatial patterns that form.
Appendix B. Analytical treatment of species diversity and rel-
ative abundance in a multi-species community with immigra-
tion

In the multispecies case without spatial interactions, the
dynamic of si, the number of species with i individuals in the local
community with fixed size N , is expressed as:

ds1
dt

= −r1,1 s1 + r1,2 s2 + γ

1 −

N
i=1

si

S


dsi
dt

= ri,i−1 si−1 − ri,i si + ri,i+1 si+1, N > i > 1

dsN
dt

= rN,N−1 sN−1 − rN,N sN

(B.1)

where ri,j are instantaneous rates at which a species with j
individuals becomes a species with i individuals through birth,
death, or immigration. The rates ri,j are defined as

ri,i−1 = λi−1(i − 1) + γ /S
ri,i = (µi + λi)i + γ /S
ri,i+1 = µi+1(i + 1)

(B.2)

where λi and µi are the per capita birth and death rates,
respectively, of a species with abundance i, γ is the immigration
rate, and S is the total number of species in the metacommunity
(for simplicity an immigrant individual is equally likely to be of
each of the S species, regardless of whether the species is already
present in the community). The above system can be recast in
matrix form as
d [y(t) − y∗]

dt
= R


y(t) − y∗


(B.3)

where

y =


s1
s2
s3
...
sN

 ,

R =



−r1,1 −
γ

S
r1,2 −

γ

S
−

γ

S
−

γ

S
· · ·

r2,1 −r2,2 r2,3 0 · · ·

0 r3,2 −r3,3 r3,4
...

...
. . .

. . .
. . .

...
...

... 0 rN,N−1 −rN,N


which has solution y(t) = y∗

+ eRt [y(0) − y∗
], with steady state

y∗
= −R−1b, where b is a vector of zeros except that the first

element is equal to γ .
If there are no species interactions, an explicit steady state

solution can be written as

si = N(1 − ν)i
ν

1−ν

N
S

ν
1−ν

+ 1

· · ·

N
S

ν
1−ν

+ i − 1


i!
ν

N
S

ν
1−ν (B.4)

where ν = 1 − λ/µ is the probability of immigration (Taylor
and Karlin, 2010). For S → ∞ it can be shown that the steady-
state solution converges to the classic Fisher log series (Fisher et al.,
1943):

si =
νN
i

(1 − ν)i−1. (B.5)

From the steady-state solution for the relative abundance distribu-
tion, we can calculate the steady-state species diversity.
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Appendix C. A simulation casewith variable number of individ-
uals

In the simulations in the main text, the total number of
individuals in the community is held constant by pairing deaths
and births (zero-sum game). Here we show that this condition,
which we adopted for computational convenience, does not
qualitatively affect the results. We simulate a model with variable
number of individuals on a square arena of area A. Initially, N the
individuals are placed at random. Birth and immigration waiting
times are drawn from an exponential distribution with rates λN
and γ respectively. For each individual j, the time to death is
drawn from a random exponential distribution with rate µj =

1 + α


k≠j K(djk), where K is a quadratic kernel with finite range
LK . The shortest waiting time determines if the next event is a
birth, an immigration or a death. If it is a birth, a parent, chosen
at random, disperses an offspring according to a Gaussian kernel
with parameter LD. If it is an immigration, a new individual chosen
from a uniform pool of S species is randomly located in the arena. If
it is a death, the individualwith the shortest death time is removed.
Periodic boundary conditions are used to reduce edge effects.

After a transient, the number of individuals and the number
of species will reach a dynamic equilibrium at which death is
balanced by immigration and birth, and extinction is balanced by
immigration. For calculating growth rates, at each death event,
individual mortality rates and the abundance of the species are
recorded.

For the zero-sum game simulations addressed in the main
text, we computed the basic reproductive number as the ratio R0
between fecundity and mortality rates. However, because this is
not a zero-sum game, at each iteration k, Nkλ ≠


j µjk, where µjk

is the mortality rate of the j individual in the kth realization and
λ is a constant fecundity rate. If R0i is defined as λ

E[µj|nj=i] , it will
be <1 for populations with high number of individuals, because
thesewill bemore likely to occur when the total community size is
above average, and usually mortality rates exceed fecundity rates.
In order to study the stabilization due exclusively to spatial effects,
we defined R0i as in Eq. (3) of the main text:

R0i =
E


µj|si > 0


E


µj|nj = i

 . (C.1)

Here R0i represents the ratio between the mean per capita
mortality rates of the whole community, when a species with i
individuals is present, divided by the mortality rate of a species
with i individuals, and thus reflects the expected change in relative
abundance. If R0i > 1, the species with i individuals have lower
mortality than the overall population at the specific time and
are expected to increase in relative abundance. If R0i < 1, the
species with i individuals have higher mortality than the overall
population and are expected to decrease in relative abundance. R0i
is estimated as

R̂0i =


k
i sik

k
N


j, k

µjk
j∈njk=i, k

µjk
, k ∈ sik > 0 (C.2)

where njk is the abundance of the species of individual j and sik
the number of species with i individuals, in the kth realization. The
summations are carried out for all realizations kwhere at least one
species with i individuals is present.

As an example a simulation of this spatial logistic process
is presented in Fig. C.1. As in the zero-sum case, the basic
reproductive number declines with increasing abundance.
Fig. C.1. Simulations for a system with varying number of individuals. Time series
of total abundance and richness is presented in top and middle panels. In bottom
panel, R0i as a function of relative abundance is computed for two cases: a system
with limited dispersal and local spatial interactions LD = LC = 1/2, and a system
with global interactions, LD = 1/2 and LC = ∞. Other parameters: S = 5, γ = 10,
λ = 3.8, A = 30. Blue line is computed with Eq. (C.1) using single simulations
with 100,000 realizations, dashed line is analytical. The black dot indicates the
average number of individuals if the species are equally abundant, hence R0i = 1,
by definition. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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