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abstract: Ecological spatial patterns are structured by a multiplicity
of processes acting over a wide range of scales. We propose a new
method, based on the scalewise variance—that is, the variance as a
function of spatial scale, calculated here with wavelet kernel func-
tions—to disentangle the signature of processes that act at different
and similar scales on observed spatial patterns. We derive exact and
approximate analytical solutions for the expected scalewise variance
under different individual-based, spatially explicit models for sessile
organisms (e.g., plants), using moment equations. We further de-
termine the probability distribution of independently observed scale-
wise variances for a given expectation, including complete spatial
randomness. Thus, we provide a new analytical test of the null model
of spatial randomness to understand at which scales, if any, the
variance departs significantly from randomness. We also derive the
likelihood function that is needed to estimate parameters of spatial
models and their uncertainties from observed patterns. The methods
are demonstrated through numerical examples and case studies of
four tropical tree species on Barro Colorado Island, Panama. The
methods developed here constitute powerful new tools for investi-
gating effects of ecological processes on spatial point patterns and
for statistical inference of process models from spatial patterns.

Keywords: moment equations, spatial logistic model, spectral analysis,
negative density dependence, spatial patterns, wavelet variance.

Introduction

Nonrandom spatial patterns are ubiquitous in ecology and
provide important information on processes structuring
communities, including dispersal, competition, density de-
pendence, and habitat associations (Law et al. 2009; Mc-
Intire and Fajardo 2009). However, similar spatial distri-
butions can emerge from different mechanisms or
different combinations of mechanisms. A first step in dis-
entangling different processes of pattern formation is to
define the scales at which the pattern occurs and thereby
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link the pattern to some mechanism operating at these
scales (Kershaw 1963; Levin 2000). Large-scale variability
(∼0.1–10 km), for example, may be driven by topographic
features or soil heterogeneity operating at the same scales.
Small-scale structure (!∼100 m) may be related to local
dispersal and interindividual interaction.

Most of the widely used tools for characterizing spatial
patterns have limited ability to separate scales. For example,
Ripley’s K, pair correlation densities, and functions related
to second-order product densities more generally are de-
signed to estimate average local densities around the focal
individual as a function of distance. By their cumulative
nature, values at any distance reflect the combined effects
of mechanisms acting at different scales (Loosmore and
Ford 2006). For example, aggregation at short distances is
found in a habitat specialist plant with long dispersal dis-
tance (fig. 1A) as well as a generalist with short dispersal
(fig. 1B) and, of course, a specialist with short dispersal (fig.
1B). This limits our ability to investigate basic ecological
mechanisms contributing to pattern formation.

To overcome some of these limitations, we need to move
from a framework where variability is analyzed as a func-
tion of space to a new approach where the variance is
decomposed scale by scale. Spectral analysis is such an
approach, and it allows for a clear view of how different
frequencies contribute to the pattern of interest (Bartlett
1964; Platt and Denman 1975). Here, we employ spectral
analysis and focus in particular on the scalewise variance
using wavelets, a second-order, consistent estimator of the
spectral density (Percival 1995). Wavelet transforms have
been employed in several studies of ecological time series
(Cazelles et al. 2008; Detto et al. 2012) but less in spatial
ecology (e.g., Dale and Mah 1998; Keitt and Urban 2005;
Mi et al. 2005), and we are not aware of any applications
in point process analysis. The mathematical and statistical
properties of wavelet transforms are well understood from
applications in other fields (e.g., Kumar and Foufoula-
Georgiou 1997). The advantage of this technique is that
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Scalewise Decomposition of Ecological Point Processes E69

Figure 1: Contrasting spatial patterns, together with their estimated pair correlation densities and wavelet variances. A, Poisson process, a
model of global dispersal in a homogenous (left) and inhomogeneous (right) habitat. B, Simulated individual-based model with short
dispersal in a homogenous and inhomogeneous habitat. Note that the wavelet variance, unlike the pair correlation density, separates processes
by scale. For example, habitat association at larger scales will elevate pair correlation statistics at all smaller distances, while the wavelet
variance is substantially unaltered for scales at which habitat association is not operating.

it makes it possible to isolate the scales of the process of
interest and analyze them separately, even in the presence
of nonstationarity (i.e., habitat heterogeneity, a case that
is not addressed in this study).

Individual-based, spatially explicit models are another
key tool in exploring the determination of spatial patterns
(Pacala 1986; Durrett and Levin 1994). Such models cap-
ture spatiotemporal dynamics with a plant’s-eye view or,
more generally, an individual-based view. Dispersal and
spatial interactions among individuals located a specified
distance apart are represented by kernel functions describ-
ing the mechanisms that govern the interaction or the
dispersal/movement event. Moment closure can be applied
to describe the dynamics of mean densities and pair cor-
relation densities and thereby obtain analytical results
(Bolker and Pacala 1997; Law and Dieckmann 2000).
These methods have improved our understanding of the
structure of plant communities, showing how endogenous
aggregation patterns affect species interactions and coex-
istence (Murrell and Law 2002; Bolker et al. 2003). Mo-
ment equations can also be developed—and, indeed, are
more easily handled—in the Fourier transformed space
(Bolker et al. 2000; Ovaskainen and Cornell 2006b). How-
ever, little has been done to apply moment methods to
real data in a statistical inference framework. Even in cases
when the mechanisms of pattern formation are well un-
derstood, the quantification of their effects remains a for-
midable challenge (McIntire and Fajardo 2009; Thompson
and Katul 2011).

One of the fundamental problems in pattern analysis
concerns understanding the limits to the information that
can be extracted from a single random sample, including
how many processes can be unambiguously discerned. For

example, the same static patterns of the distributions of
tropical tree species in the large forest plot (50 ha) of Barro
Colorado Island have alternatively been used to investigate
habitat associations (Plotkin et al. 2000; Harms et al. 2001),
effective dispersal distance (Anand and Langille 2010), and
negative density dependence (Bagchi et al. 2011). This
raises the question of how all these processes can be an-
alyzed simultaneously without interference of one process
with another.

Here, we show how scalewise variances and, specifically,
wavelet variances can be derived analytically from spatially
explicit, individual-based models. We derive new analytical
results on wavelet variances expected under models with
local dispersal and neighborhood competition, using mo-
ment methods in homogeneous environments. We further
derive the asymptotic statistical properties of these wavelet
variances and show how these can be used to estimate
process parameters from observed spatial patterns. A key
result is the derivation of an approximate likelihood func-
tion that is consistent with the process underlying the
model and makes it possible to estimate the most likely
parameters and, importantly, their uncertainty. We dem-
onstrate these methods with numerical examples and a
case study of four tropical tree species. The methods pre-
sented here constitute a powerful new tool for ecologists
to investigate spatial processes and patterns.

Theory

The Scalewise Variance: A Tool for Scale-By-Scale
Decomposition of Spatial Patterns

Consider a spatial point process that generates a random
pattern of points that are the locations of individuals in
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a two-dimensional space of finite area A. A realization of
this process can be represented as the sum of Dirac d

functions centered at the n point locations andx p (x, y)
0 everywhere else: .

n
p(x) p � d(x � x )iip1

The first spatial moment, the mean density, is simply

1 n
N p p(x)dx p . (1)�A A

The second-order spatial moment, the pair correlation
density, holds information on how individuals are dis-
tributed across space:

1
C(r) p p(x)[p(x � r) � d(r)]dx, (2)�A

where r is the spatial lag and the d function removes the
focal individual.

Application of a Fourier transform, C̃(q) p
, reduces the pair correlation density to a simple�jqrC(r)e dr∫

product minus a constant (the Fourier transform of a d

function is unity):

1 *˜ ˜ ˜C(q) p p(q)p (q) � N, (3)
A

where is the angular frequency, is the˜q p (q , q ) p(q)x y

Fourier transform of p(x) (i.e., , with j
n �jqx ip̃(q) p � eip1

the imaginary unit), and is its complex conjugate.*p̃ (q)
The first term on the right-hand side of equation (3) is
the two-dimensional spectral density function of p(x), or
simply the power spectrum, (Bartlett 1964). Knowl-G(q)
edge of the function makes it possible to assess theG(q)
scalewise variance Vw, that is, the expected variance in
population density sampled with a given kernel w(x)
(Daley and Vere-Jones 2003, p. 304):

2˜V p G(q)Fw(q)F dq. (4)w �
For convenience, we introduce the operator ⎡f(q)⎤ p

, where , so equation (4) can2˜f(q)H(q)dq H(q) p Fw(q)F∫
be rewritten as . The functions w are essentiallyV p ⎡G(q)⎤w

smoothing filters whose properties depend on the type of
kernel and associated scaling parameter, s. They enable
study of features of the process whose detail matches their
scale parameters, that is, broad features for large s and fine
features for small s. For this purpose, kernels should be
functions with compact support in both the frequency and
the spatial domain, essentially compromising between fre-
quency and spatial resolution in order not to lose locali-
zation in physical space (in accordance with the Heisen-
berg uncertainty principle, which in this context states that
it is impossible to achieve spectral and spatial resolution
simultaneously). The scale parameter s is associated with

a physical scale to allow ready interpretation; for example,
for isotropic problems, it is convenient to express s as a
function of the one-dimensional Fourier period l p

, which represents the distance among peaks of an2p/FqF
oscillation.

Wavelets constitute a suitable family of kernel functions
satisfying the above requirements (Kumar and Foufoula-
Georgiou 1997). Among many choices of wavelets, the
Morlet (Daubechies 1992) is one of the most commonly
used wavelets and has proved effective in spatial ecological
applications (Mi et al. 2005). It can assume a simplified
isotropic form, and its Fourier transform is

2�1 �(sFqF � q )0
w̃(q) p exp , (5)( )c s 2w

where cws is a normalization factor to ensure that the wave-
let has unit energy at all scales. The shape parameter q0

regulates the width of the support in the frequency space:
for , the scalewise variance Vw(s) is basically identicalq 1 80

to its Fourier counterpart when the spectrum is relatively
featureless (e.g., it obeys a power law over a certain interval
of frequencies).

For this wavelet, the ratio between the equivalent Fou-
rier period (l), and the wavelet scales (s), Ff exists and
can be derived analytically (Meyers et al. 1993); we find
that it is

l 4p
F p p . (6)f 2�s q � 4 � q0 0

Using equations (3), (4), and (6) and normalizing by N
(to permit comparisons among populations with different
densities), we obtain the normalized scalewise variance as
a function of the Fourier period:

C̃(q)
2n (l) p � 1 . (7)

N⎡ ⎤
This is the key spatial statistic we explore in the remainder
of the article, although the theory above is not restricted
to wavelets or this particular type of wavelet. The wavelet
variance can be thought of as a smoother and more con-
sistent estimate of the Fourier spectrum, which is usually
plagued with noise and in need of some arbitrary manip-
ulation (e.g., tapering, binning, windowing). However, dif-
ferences exist; while the Fourier coefficients are influenced
by the process on its entire domain, the wavelet transform
coefficients are influenced by local events. This makes the
wavelet spectrum a better measure of variance attributed
to localized structures. Equations (6) and (7) are new re-
sults that enable this work.

For more background on wavelets and wavelet vari-
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ances, see Percival (1995), Kumar and Foufoula-Georgiou
(1997), and Torrence and Compo (1998).

Statistical Properties of the Scalewise Variance Estimator

For complete spatial random (CSR) distributed popula-
tions, the normalized scalewise variance is equal to 1 at
all scales, just as for a Poisson process, the variance is
equal to the mean density. Eventually, at small scales, the
normalized variance of any observed pattern tends to 1;
as the probability to encounter two individuals in the same
area becomes negligible, the variance approaches the mean,
and locally the process approaches a Poisson process
(Daley and Vere-Jones 2003).

The null hypothesis of complete spatial randomness can
be tested using the properties of the Poisson distribution.
For a CSR process, the number of individuals contained
in a box of area is a Poisson variable with mean equal2�
to . Given k independent realizations X1, X2, ..., Xk,

2N�
drawn from a Poisson distribution with mean , the sumX
of k normalized square deviations is approximately equal
in distribution to a x2 with degrees of freedom:k � 1

2k (X � X)i w 2p x .� k�1Xip1

This relationship directly provides the confidence intervals
as a function of block size for box counting methods,
which corresponds to kernel-like indicator functions:

�
1, FxF, FyF ≤

2
w(x) p .�{0, FxF, FyF 1

2

The degrees of freedom are simply the numbers of boxes
minus 1: .2k p A/�

Our work shows that the same approach can also be
used to estimate the confidence intervals of the wavelet
variance for a CSR process. In this case, the determination
of the degrees of freedom is not so straightforward because
the wavelet is not perfectly localized in physical space (in
contrast with indicator functions). The degrees of freedom
depend on the number of independent points averaged
by the wavelet filter, which varies with the analyzed scale.
We would expect that in the same manner as2k ∝ A/l
the box counting method. Large sample theory ensures
that, under fairly general conditions (Serroukh et al. 2000),
the estimator is asymptotically normally distributed2n̂ (l)
with mean and finite large sample variance. For a2n (l)
Gaussian process, the large sample variance is equal to

(Percival 1995), where2A (l)/As

2 2A (l) p G (q)H (q)dq. (8)s � s

Using an equivalent degrees of freedom argument, it fol-
lows that is distributed as a x2 with h degrees2 2ˆhn (l)/n (l)
of freedom given by

4An (l)
h(l) p . (9)

A (l)s

The central limit theorem ensures that the Fourier trans-
form of a Poisson process, , is asymp-

n �jqx ip̃(q) p � eip1

totically (complex) Gaussian because it is a sum of in-
dependent, identically distributed random variables (for

). Solving the integrals (4) and (8) for the Morletn 1 5
wavelet with the conditions and , we2G(q) { 1 n (l) { 1
find

A
2 2�h(l) p 2c F , (10)w f 2l

which is directly proportional to , as expected from2A/l
the box counting analogy. Monte Carlo simulations agree
very well with our resulting predicted confidence intervals
(fig. 2). According to equation (10), the large sample prop-
erties of the normalized wavelet variance for a CSR process
are independent of the mean density (provided that there
are at least five individuals in the sampled area), a result
confirmed by simulations. This makes the wavelet variance
a pivotal discriminant statistic for testing the null hy-
pothesis of nonrandomness for populations with different
numbers of individuals.

It is important to note that the wavelet variance esti-
mates at different scales are not completely independent,
because the functions overlap for small spectral in-H (q)s

tervals. This can create complications when the least
squares regressions or likelihood functions are computed.
One approach would be to choose the interval between
scales sufficiently large to minimize this problem, but this
has the drawback of losing resolution and important fea-
tures of the wavelet variance. Alternatively, under the as-
sumption that for two scales li and lj, wavelet variances
computed from independent realizations are asymptoti-
cally normally distributed with mean and , the joint2 2n ni j

probability of observed wavelet variances can be approx-
imated by a multivariate normal distribution

(fig. S1, available online). We thus obtain the2MVN(n , S)
(new) result that for a Gaussian process, the covariance
matrix can be defined, similar to the large sample variance
above, as , whereS p 2A /Aij ij

2A p G (q)H (q)H (q)dq. (11)ij � i j
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Figure 2: A, Wavelet variance estimates from 1,000 simulated point patterns of 500 individuals over 1 ha displaying complete spatial
randomness (gray lines), compared with the expected value (black line) and predicted 95% confidence intervals (red lines). B–E, Predicted
and observed quantiles for different scales. Note that the width of the confidence interval increases with increasing scale (red lines in A),
because the number of degrees of freedom declines with increasing scale. The quantiles predicted using the x2 approximation closely match
the observed.

When is not known a priori, an estimate can be2 ˆG (q) Aij

used instead (Percival 1995).

Model Fitting

The statistical properties of the observed scalewise variance
enable parameter estimation using maximum likelihood
techniques. Let be the observed wavelet variance. Then,2n̂

given a parametric model defining the expected wavelet
variance as a function of a parameter vector b, and2n̂ (b)
assuming that the estimated wavelet variance deviations

are jointly normal distributed with disper-2 2n̂ (l ) � n (l )i i

sion matrix S, we find that the likelihood function L is
directly proportional to

1
2 2 2 T �1 2 2ˆ ˆ ˆL(n Fb) ∝ exp � (n � n (b)) S (n � n (b)) . (12)[ ]2

If the model is known analytically or by numerical2n (b)
integration, maximum likelihood estimation can be done
using a generalized nonlinear least squares algorithm (app.
B, available online). More generally, it can be done using
stochastic methods, that is, by simulating point patterns
for specified parameters (for a review of such stochastic
methods, see Hartig et al. 2011).

The dispersion matrix S is known for Gaussian pro-
cesses from and equation (11); however, it isS p 2A /Aij ij

unknown for the general case. A first estimate of the pa-
rameters can be made using the Gaussian assumption. In
a second step, simulations should give the correct S. This
process can be repeated iteratively until model parameters
and their uncertainties converge. We found that one it-

eration was usually enough. The likelihood function (eq.
[12]) is a new result that constitutes the foundation of the
fitting method.

Models

A General Spatial Logistic Model for Population Dynamics
and Its Expected Scalewise Variance

Consider a spatial-temporal process p(x, t) that represents
the dynamics of a single population of identical sessile
individuals, such as plants, on a two-dimensional spatial
domain. Individuals die at rate m and reproduce at rate
f, and propagules (e.g., seeds) are dispersed from the parent
according to dispersal kernel D(x). The establishment
probability of a propagule depends on the positions of all
the conspecific individuals in its neighborhood, with the
influences of neighbors described by interaction kernel
K(x). At each time t, the process is regarded as a realization
of a point pattern process and described by the function
p(x, t). The probability of finding a new individual at
location x is given by the convolution f D(x �∫

. The density-dependent probability of estab-′ ′ ′x )p(x , t)dx
lishment of new individuals due to competition with
neighbors (including parents) is expressed by the convo-
lution .′′ ′′ ′′1 � a K(x � x )p(x , t)dx∫

Assuming isotropy of the dispersal and competition ker-
nels and a homogeneous environment, the temporal dy-
namics of the first and second moments (Bolker et al.
2000; Dieckmann and Law 2000) follow
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dN
p (f � m � fa(D * K)(0))N

dt

′ ′ ′� af (D * K)(r )C(r )dr , (13a)�
1 dC(r)

p f ND(r) � fD * C(r)
2 dt

′ ′ ′′ ′′ ′ ′ ′′� af D(r )K(r � r )T(r , r � r)dr dr��
� mC(r), (13b)

where * represents a two-dimensional convolution integral
and is the third moment (for details, see app.′′ ′T(r , r � r)
A, available online).

We obtain the exact analytical solution for the expected
scalewise variances of this model under the simplified case,
in which establishment is purely spatial independent
(model I), and the approximate solution for the full model
(model II).

Model I: Dispersal Only

If establishment is purely spatial independent (e.g.,
), then the spatial pattern is due entirely to�1K(x) p A

dispersal. The equation for the first moment reduces to
the classic logistic model

dN
2p (f � m)N � af N (14a)

dt

and the second moment to

1 dC(r)
p

2 dt

(f ND(r) � fD * C(r))(1 � aN) � mC(r). (14b)

It is convenient to rewrite equation (14b) in the Fourier
domain, because the convolution integral simplifies to a
product among transformed variables and the solution is
directly comparable to the scalewise variance (by means
of eq. [7]):

ˆ1 dC(q)
p

2 dt

˜ ˜˜ ˜(f ND(q) � fD(q)C(q))(1 � aN) � mC(q). (15)

The stable steady state solution, which requires N p
, is(f � m)/af

˜ND(q)
C̃(q) p . (16)˜1 � D(q)

This can be expressed in terms of the normalized scalewise
variance as

1
2n (l) p , (17)˜1 � D(q, c )⎡ D ⎤

where cD is the dispersal kernel parameter. The exact same
result would be obtained if establishment is purely density
independent ( ).a p 0

Equation (17) can be used to estimate the dispersal
parameter from the observed scalewise variance for any
given dispersal kernel. This is completely straightforward
if the Fourier transform of the dispersal kernel (i.e., its
characteristic function) is known analytically (table 1) and
can be done numerically in other cases. The wavelet var-
iance provides a clear signature of the effects of different
dispersal parameters (fig. 3A) and also differs among dif-
ferent dispersal kernels (fig. 3B).

One important property of this dispersal-only model is
that for large scales ( ), the logarithmic slope of thel k cD

variance is independent of the type of kernel and asymp-
totically approaches 2. This suggests defining an equivalent
Gaussian factor for each kernel such that for large scales
all the curves collapse to the solution obtained with the
Gaussian kernel. The Gaussian factor for a particular ker-
nel is obtained analytically from the limit forD̃(q, c )D

of the ratioq r 0
2 2�c q /21 � e

2G p lim . (18)f ˜1 � D(q, c)qr0

When the curves obtained with different kernels are plot-
ted as a function of the Fourier scale normalized by the
equivalent Gaussian dispersal distance, their wavelet var-
iances differ only in a small region around the normalized
scales 1–10 (fig. 3B).

This model is simulated starting from an initial random
pattern of n individuals on a torus of area A (or larger to
minimize edge effects). A new individual is generated at
a random distance, chosen according to the dispersal ker-
nel distribution D(r, cD), from a randomly chosen parent.
Then, a randomly chosen individual is removed from the
point pattern. Simulation of births and deaths continues
until the second-order spatial moment is approximately
constant.

Simulations show that the analytical model correctly
captures the mean spatial pattern (fig. 4C). Unlike the
Poisson process, for patterns generated by this cluster pro-
cess, the confidence intervals around the wavelet variance
estimates—and thus around —depend on the numberĉD

of individuals n (fig. 3D). As , the assumption ofn r �
normality is increasingly well satisfied, the dispersion ma-
trix S for the likelihood function approaches the analytical
expression derived above (eq. [11]), and the confidence
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Table 1: Various one-parameter dispersal kernels, their Fourier transforms, and their Gaussian
factors, Gf

Name Dispersal kernel D(r, c)
Fourier transform of kernel

D̃(q, c)
Gaussian factor

Gf

Gaussian
2 22 �1 �r /2c(2pc ) e

2 2�c q /2e 1
Exponential 2 �1 �FrF/c(2pc ) e 2 2 �3/2(1 � c q ) �3/3
Laplace 2 �1(2pc ) B (FrF/c)0

2 2 �1(1 � c q ) �2/2
Uniform 2 �1(pc ) r ≤ c

0 r 1 c
2J (cq)/cq1 2

Epanechnikov 2 �1 2 22(pc ) (1 � r /c ) r ≤ c
0 r 1 c

�28J (cq)(cq)2
�6

Biweight 2 �1 2 2 23(pc ) (1 � r /c ) r ≤ c
0 r 1 c

2 2Hypergeometric0F1 (4, � 1/4c q ) �2 2

Note: B0 is the modified Bessel function of the second kind, Jn is the Bessel function of the first kind, and Hyper-

geometric0F1 is the confluent hypergeometric function (Abramowitz and Stegun 1965). Gf is a multiplicative factor of

the dispersal parameter such that the normalized wavelet variance (eq. [17]) is asymptotically equal to that for a

Gaussian kernel for large scales.

intervals approach those obtained analytically (fig. 3D).
Maximum likelihood fits to simulated data show that there
is a small bias in parameter estimates (1%–4%), especially
for small data sets (table 2). The standard deviations of
the estimates, , decline with increasing n. ObservedjcD

are lower than expected values for small n and veryjcD

accurate for (table 2; app. A).n ≥ 200

Model II: Dispersal and Conspecific
Density-Dependent Establishment

When spatial density-dependent effects are present, equa-
tions (13) do not have a closed analytical solution; an
approximate solution can be obtained through moment
closure (app. A; Bolker et al. 2000; Murrell et al. 2004):

1 dC(r) ≈ f ND(r) � fD * C(r) � mC(r)
2 dt

� af N D * C(r) � ND(r) � K * C(r) � NK(r) (19)[
′ ′ ′ 2� D * K(r )C(r )dr � ND * K(0) � 2N .� ]

The steady state solution for the scalewise variance is

2n (l) ≈II

1
(20)˜ ˜1 � (f/m)(1 � aN)D(q, c ) � (f/m)aNK(q, c )⎡ D K ⎤

(app. A). This model now involves all the parameters and
the mean density, N.

It is useful to further simplify this model for the pur-
poses of examining its qualitative behavior. If we assume
long-range dispersal and competition, then N ≈ (f �

, and the scalewise variance becomesm)/af

1
2n (l) ≈ . (21)II ˜ ˜1 � D(q, c ) � [(f � m)/m]K(q, c )⎡ D K ⎤

The qualitative behavior of the wavelet variance under this
model is a function of two nondimensional derived pa-
rameters: a nonspatial parameter , whichP p (f � m)/m1

reflects the importance of negative density dependence
(NDD), and a spatial parameter , which reflectsP p c /c2 K D

the relative scale of competition to dispersal.
The influence of the density dependence parameter P1

on the wavelet variance clearly shows how NDD reduces
aggregation relative to what would be expected from dis-
persal alone (eq. [21]; fig. 4A). When competition and
dispersal scales are equal and density-dependent effects
equal density-independent ones ( ), the distributionP p 11

is indistinguishable from a CSR process (fig. 4A, green
line). When density-dependent mortality is greater than
density-independent mortality ( ), spatial distribu-P 1 11

tions are disaggregated, because the probability of finding
new individuals increases with distance from parents for
distances smaller than cD, exactly the pattern posited by
Janzen (1970) in his classic article on the influences of
natural enemies (fig. 4A, red line).

The influence of parameter P2 on the wavelet variance
shows how the relative scales of dispersal and competition
determine the shape of the wavelet variance function (fig.
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Figure 3: Wavelet variances for model I, in which spatial patterns are driven entirely by dispersal. A, Analytical solutions for a two-
dimensional Laplace dispersal kernel under different dispersal parameters. B, Analytical solutions for different dispersal kernels as a function
of the normalized Fourier period, where Gf is the equivalent Gaussian factor (table 1). C, Observed wavelet variances for 1,000 simulations
on a square arena of ha with Gaussian dispersal kernel, with parameter values m and (gray lines), with their averageA p 1 c p 3 N p 200D

(black line) and 95% confidence intervals (CIs; black dashed lines under red line), compared with the analytical model (red line). D, 95%
CIs of 1,000 simulations with m and ha, relative to the theoretical 95% CIs for Gaussian processes (dashed red lines).c p 3 A p 1D

4B). If competition occurs over shorter distances than dis-
persal ( ), individuals can be disaggregated at smallP ! 12

scales, while at larger scales they start to form patterns
because of dispersal limitation (fig. 4B, blue line). If com-
petition occurs at longer scales than dispersal ( ),P 1 12

the spatial pattern for is insensitive to NDD andl ! cK

the solution resembles that for dispersal only, while at
larger scales, clustering is reduced far below that expected
under dispersal alone (fig. 4B, red line). The latter case

results in the formation of a pattern with a characteristic
scale (corresponding to the peak of the spectrum), just as
occurs in reaction-diffusion systems when a slow diffusing
activator (here dispersal) combines with a fast diffusing
inhibitor (here competition; Turing 1952).

These qualitative insights are useful, but unfortunately,
the underlying equation for the scalewise variance is just
an approximation that is valid only for a limited range of
parameter values. Numerical simulations have shown that
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the power-1 closure used to obtain the approximate so-
lution in equations (19) and (20) may fail for moderate
overdispersion (Murrell et al. 2004) and high density (Ra-
ghib et al. 2011). Moreover, the simplified model (eq. [21])
explored above is limited to long-range dispersal or com-
petition (relatively large cD or cK) or moderate NDD (small
P1). Thus, we next consider the exact behavior and im-
plications for parameter estimation using numerical
examples.

This process can be simulated through a small variation

on the previous algorithm. Offspring are still generated
from a randomly chosen parent and displaced according
to the dispersal kernel, but they establish successfully (and
thus are retained) only with probability 1 � a K(x �∫

. If the offspring fails to establish, another par-′ ′ ′x )p(x )dx
ent is randomly chosen and another offspring randomly
displaced.

Simulations confirm the qualitative insights from the
analytical approximation hold also for shorter-range dis-
persal and competition (e.g., fig. 4C). They also demon-
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Table 2: Effect of sample size (specifically, number
of individuals [n]) on parameter estimates of
model I

n ˆEcD jcD
ˆEjcD

25 3.12 .67 .75
50 3.09 .59 .64
200 3.09 .36 .39
500 3.06 .29 .30
1,000 3.03 .24 .25

Note: and are the average and standard deviationˆEc jD cD

of the parameter estimates from 1,000 simulations (A p
ha, Gaussian kernel m). is the average esti-ˆ1 c p 3 EjD cD

mated standard deviation using , where J is2 T �1 �1ĵ p (J S J)b

the Jacobian and , the covariance2 2ˆ ˆS p Cov [n (l ), n (l )]ij i j

matrix of the wavelet variances (for details, see app. B, avail-

able online).

strate the feasibility of estimating parameters of model II
from wavelet variance data using maximum likelihood,
since the likelihood is maximized around the true param-
eter values (fig. 4D). However, there is a relatively large
region of parameter space with very similar likelihoods,
even when one of three parameters is assumed known.
Estimation of all three parameters simultaneously leads to
even larger regions of equifinality and thus wider confi-
dence intervals.

Case Study

We analyzed spatial patterns of four tropical tree species
in the 50-ha forest dynamics plot on Barro Colorado Is-
land, Panama (Leigh et al. 1996). All freestanding woody
stems 11 cm in diameter were identified to species and
mapped to 0.1 m, with censuses in 1982, 1985, and every
5 years through 2010 (Hubbell and Foster 1986; Condit
1998). Barro Colorado data are deposited in the National
Center for Ecological Analysis and Synthesis data
repository (http://knb.ecoinformatics.org/knb/metacat
/nceas.298.6/nceas).

Methods

For each species, a raster was created by counting the
number of individuals in each -m grid cell. The Mor-1 # 1
let wavelet variance ( ) and the abundance (first andq p 8o

second moment) were calculated for each census for 39
scales log-evenly spaced between 2 and 100 m. We averaged
the seven individual census normalized wavelet variances
and analyzed this ensemble average as a single realization.
(If the spatial patterns in different censuses were statisti-
cally independent, the ensemble average would follow a
x2 distribution with degrees of freedom equal to the sum
of the degrees of freedom of individual realizations. Turn-

over rates average 10% per census interval, so the patterns
in different censuses are far from independent.)

We first tested whether spatial patterns deviated signif-
icantly from random and, if so, at what scales, by com-
paring observed wavelet variances with the expectation
under CSR.

Model I (eq. [17]) and the simplified model II (eq. [21])
were then fitted for each species, using a Laplace kernel
for dispersal and competition (Van den Bosch 1988; Bolker
and Pacala 1997; Ovaskainen and Cornell 2006a). The
models, , were fitted using generalized nonlinear2n (l, b)
least squares (details in app. B). The fitting scheme differed
slightly from the numerical examples because the disper-
sion matrix S was not known a priori. Thus, we obtained
a first estimate of the parameters using . WeS p 2A /Aij ij

then simulated 1,000 processes using these estimated pa-
rameters, used the simulations to compute the exact matrix
S, and reestimated the model parameters and their un-
certainties. The differences between the first and second
estimates were small because the likelihood functions are
qualitatively very similar (but the parameter uncertainties
are underestimated using the first matrix S, especially for
small N); thus, no further iterations were necessary. In
fitting model II, we set the initial value of as equalc p cD K

to the best-fit dispersal parameter from model I, and
(thus, also ).P p 0 a p 01

We compared the models in terms of their modified
Akaike information criterion (AIC; Burnham and Ander-
son 2002):

2k(k � 1)
AIC p 2k � 2 ln (L) � ,

J � k � 1

where k is the number of parameters and J is the number
of observed scales. Further details are given in appendix
C, available online.

Results

All four species showed highly significant spatial structure,
with wavelet variances significantly 11 for spatial scales
k10 m (fig. 5). Model I reproduced the basic features of
the wavelet variance for most species. However, the slope
of the observed wavelet variance was generally !2, the
value expected under model I; thus, model II was a better
fit for all four species (fig. 5). This implies that NDD
reduces clustering created by dispersal. Dispersal distance
estimates under model II were invariably less than those
for model I, and the difference increased as P1 increased.

For Desmopsis panamensis, an abundant understory spe-
cies, the wavelet variance was significantly higher than 1
at scales 110 m but increased less rapidly than predicted
by model I. Furthermore, there was disaggregation at small
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Figure 5: Observed spatial patterns (left) of four tropical tree species in the 50-ha plot on Barro Colorado Island, Panama, along with their
observed (right; dots) and fitted (right; solid lines) wavelet variances. The focal species were chosen to represent the range of patterns
observed among the 100 most abundant species. The observed wavelet variances are compared with 95% confidence intervals for a complete
spatial randomness process (red dashed lines). Fitting statistics are shown on the right; best-fit parameter values are shown with their
standard deviations; all distances are in meters. In all cases, model II provides a significantly better fit than model I (negative DAICII-I); the
difference is greatest by far in the case of Desmopsis panamensis.

scales, which was correctly captured by model II but not
model I (fig. 5). This is the classic case that fairly strong
( ) conspecific NDD acts at smaller scales thanP p 0.341

dispersal ( ).c ! cK D

In contrast, Guatteria dumetorum, a less abundant can-
opy species, appeared less aggregated than D. panamensis.
Small scales were entirely bounded by the 95% confidence

intervals for a CSR. Both models estimated longer dispersal
for Guatteria than for Desmopsis. Though NDD was sign-
ificant (model II does better), it was much weaker than
in Desmopsis (fourfold lower P1).

Coussarea curvigemmia and Protium tenuifolium, both
small trees of moderate abundance, showed the highest
values of the wavelet variance, especially at larger scales.
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Coussarea was estimated to have only weak NDD, while
Protium had strong NDD whose effect was particularly
obvious at large scales.

Discussion

Ecologists have long examined spatial patterns for insights
into ecological processes (e.g., Kershaw 1963). A first focus
has been to evaluate whether spatial patterns are signifi-
cantly nonrandom. The test developed here has two key
advantages over previous approaches. First, it is analytical;
it does not required Monte Carlo simulations. Second, it
identifies at which scales the process departs significantly
from CSR. In contrast, randomization tests based on Rip-
ley’s K (e.g., Plotkin et al. 2000) or pair density correlations
(e.g., Condit et al. 2000) cannot distinguish whether, for
example, departures from CSR at small distances are due
to causes acting at small scales or at larger scales (Loosmore
and Ford 2006).

Once spatial patterns are established to be nonrandom,
the next challenge is to extract information about the pro-
cesses underlying this nonrandomness. Here, we provide
new tools for calculating the likelihood of particular pat-
terns under alternative models and alternative parameter
values and, thereby, a method to fit models and choose
among them on the basis of static patterns. This represents
a major advance over previous approaches because it pro-
vides a clear analytical link to models formulated explicitly
in terms of ecological processes. Some previous studies
have related patterns to classic cluster algorithms (Waa-
gepetersen and Guan 2009; Wiegand et al. 2009), but such
linkages provide little insight into, for example, how dis-
persal and density dependence contribute to pattern for-
mation. Linking to individual-based models derived using
basic ecological principles (e.g., reproduction, mortality,
dispersal, competition) allows easier interpretation (e.g.,
Anand and Langille 2010). Further, our methods enable
quantification of uncertainties in resulting parameter es-
timates, critical information for comparing and integrating
results of multiple studies. An important caveat, as men-
tioned above, is that the approximation used in the mo-
ment equation is not uniquely defined and the error may
be dependent on the model parameter (Murrell et al.
2004), a clear drawback for inferential analysis that should
be more carefully addressed in future work.

A major advantage of linking ecological patterns with
individual-based, spatially explicit models is that all model
assumptions are clearly stated in terms of ecological pro-
cesses, and these can easily be kept in mind when results
are interpreted. Taking the above case study results as an
example, we noted that dispersal distance estimates under
model II are invariably less than those for model I, and
the difference increases as P1 increases. This makes sense,

since the dispersal estimates from model I are best thought
of as estimates of effective dispersal distance—that is, the
dispersal distance of successfully establishing individuals—
which becomes ever larger than actual dispersal distance
as conspecific NDD becomes stronger. Even for model II,
it is important to note that estimated dispersal distances
are not expected to correspond exactly to real dispersal
distances, because the fitted model assumes all individuals
are reproductive. Given that in reality only the larger in-
dividuals are reproductive, real dispersal distances must
necessarily be longer than those estimated under this
model. Similarly, estimates of NDD obtained from fitting
model II may be biased because in the real world com-
petition for resources is size dependent, while the fitted
model lacks size structure (for an age-structured model,
see Murrell 2009). Interpretation must also consider the
suite of alternative models examined and unexamined.
Models that incorporate NDD in survival, growth, or fe-
cundity are likely to produce similar patterns to model II,
which has NDD establishment.

The models analyzed here do not include habitat het-
erogeneity, which affects spatial structure in many pop-
ulations. Where habitat variability operates scales much
larger than the scales of dispersal and competition, the
spatial patterns at these smaller scales would not be af-
fected, and to a first-order approximation, habitat effects
can be neglected in estimating dispersal and competition
parameters. However, in other cases, habitat heterogeneity
may act on scales comparable to dispersal and competition,
in which case the spatial pattern will depend on all three
processes (habitat association, dispersal, and competition)
and it will be difficult to disentangle their influences. The
Barro Colorado Island plot can be divided into five broad
habitat types: slope, low plateau, high plateau, streamside,
and swamp (Harms et al. 2001). Of our focal species,
Desmopsis panamensis is positively associated with high
plateau, Guatteria dumetorum is positively associated with
slope and negatively with high plateau, and Protium tenu-
ifolium is negatively associated with the swamp, according
to conservative habitat randomization tests (Harms et al.
2001). Given the large spatial scale of these habitats, they
are expected to affect wavelet variances at scales of ∼100
m and greater. In contrast, dispersal and competition op-
erate mostly on smaller scales in our system. Thus, it is
not surprising that we are able to obtain a good fit to
small-scale spatial structure in these species with a model
that ignores habitat heterogeneity.

The models here also ignore heterospecific interactions
as determinants of population spatial structure, despite the
fact that heterospecific neighbors also have strong influ-
ences on the growth and survival of individuals (Uriarte
et al. 2004; Comita et al. 2010). A multispecies model that
includes heterospecific as well as conspecific interactions
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has been developed by Law and Dieckmann (2000). We
can use this model to simultaneously fit the wavelet var-
iance of two individual species and their covariance. How-
ever, in species-rich communities such as Barro Colorado,
with ∼300 tree species in 50 ha, a dilution effect yields
approximate species independence (Wiegand et al. 2012).
As a result, there is little improvement, if any, in fitting
the multivariate model compared with fitting each species
independently. Clearly, there are other communities in
which heterospecific interactions are relatively more im-
portant in shaping spatial patterns and in which a mul-
tispecies model would thus provide a better fit and yield
more information about the processes driving dynamics
in the system.

Our methods have certain limitations, which are general
to any analyses of spatial patterns. First, multiple processes
can produce similar spatial patterns, providing limits to
what any analysis of static patterns alone can yield. For
example, strong NDD can counterbalance dispersal limi-
tation effects, producing a pattern that is similar or in
extreme cases indistinguishable from a random pattern
(long dispersal). In general, this problem arises when the
scales of different ecological processes overlap, making it
hard to quantify, for these scales, how much variance is
produced (or reduced) by one process or another. Second,
analyses of processes with larger scales require data with
adequate spatial extension. Thus, for example, estimates
of dispersal distance that are long relative to the scale of
the data ( ) are less accurate because asymptotic1/2c ∼ AD

trends at larger scales are not well resolved or are absent
in the scalewise variances.

Recommendations and Future Directions

Here, we developed new tools for investigating the effects
of ecological processes on spatial point patterns and de-
riving information on ecological processes from these pat-
terns. Future theoretical work should investigate how hab-
itat heterogeneity is expected to influence scalewise
variances (Ovaskainen and Cornell 2006a) and evaluate
the potential for linking species spatial patterns to habitat.
Exploration of expected scalewise variances for additional
dispersal and interaction kernels, anisotropic effects, dif-
ferent types of NDD (and potentially positive density de-
pendence), and more complex models incorporating age
and size structure (Murrell 2009) and/or multiple species
(Law and Dieckmann 2000) could further shed light on
the impacts of different ecological processes on spatial pat-
terns. These methods can also be extended beyond sessile
organisms by considering adding a movement kernel to
the model, following Law and Dieckman (2000).

Maximum insight into underlying ecological processes
will be gained by judiciously combining the spatial analyses

pioneered here with other sources of information. Fitting
even moderately complex models to spatial data alone re-
sults in wide confidence intervals (e.g., fig. 4) because the
scales of many ecological processes often overlap (e.g.,
short dispersal and NDD), with the consequence that sim-
ilar patterns are produced with different combinations of
the parameters. The likelihood function for the normalized
wavelet variances can be combined with prior information
or analyses of other data sets to narrow confidence inter-
vals. For example, a study of seed dispersal might inform
prior distributions on the dispersal parameter. Data from
multiple censuses may provide further information about
the spatial-temporal dynamics (Ovaskainen and Cornell
2006b), enabling, for example, independent estimates of
fecundity and mortality. Wide application of the methods
developed here could shed light on the prevalence and
strength of NDD, the relative scales of dispersal and com-
petition, and the distribution of effective dispersal dis-
tances within and among populations and communities.
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