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Abstract Leaf area index and leaf area density profiles are key variables for upscaling from leaves to
ecosystems yet are difficult to measure well in dense and tall forest canopies. We present a new model to
estimate leaf area density profiles from discrete multireturn data derived by airborne waveform light detection
and ranging (lidar), a model based on stochastic radiative transfer theory. We tested the method on simulated
ray tracing data for highly clumped forest canopies, both vertically homogenous and vertically inhomogeneous.
Our method was able to reproduce simulated vertical foliage profiles with small errors and predictable biases
in dense canopies (leaf area index = 6) including layers below densely foliated upper canopies. As a case study,
we then applied the method to real multireturn airborne lidar data for a 50 ha plot of moist tropical forest on
Barro Colorado Island, Panama. The method is suitable for estimating foliage profiles in a complex tropical forest,
which opens new avenues for analyses of spatial and temporal variations in foliage distributions.

1. Introduction

Leaf area density, the leaf area per unit of volume, is one of the most important ecophysiological attributes of
vegetation, as it is a key variable for upscaling many processes from leaves to ecosystems [Jarvis and
McNaughton, 1986]. Not only does foliage intercept radiation, transpire, and photosynthesize, and exchanges
other various gases, it also intercepts precipitation and is subject to deposition of atmospheric aerosols.
Despite its importance, leaf area density and its three-dimensional (3-D) variation in space over large areas
remains challenging to estimate, especially in natural forest ecosystems [Bréda, 2003].

The three-dimensional distribution of foliage in forests is influenced by multiple factors expressed at different
spatial and temporal scales. Within a plant, leaves are clustered along twigs, branches, and stems. At the
stand level, the within-crown foliage distribution is determined by competition for light and other resources
and also by the type and frequency of disturbances (e.g., canopy gaps) and successional trajectories. At the
landscape level, heterogeneity in soil, climate, and disturbances such as fires, landslides, and windthrows
contributes to large-scale variability in tree and thus foliage distributions. As a result, the structure of forests,
such as those found throughout the humid tropics, is famously structurally complex. A single hectare of
tropical forest, for example, may contain hundreds of species of different life forms including shrubs, trees,
lianas, and epiphytes; thus, it is a particularly difficult challenge to understand how these plants, and their
foliage, fill space in three dimensions.

This structural complexity and associated spatial variation in leaf area density has important consequences for
ecosystem functions and dynamics [Shugart et al., 2010]. For example, simulations of light interception and
energy fluxes are strongly affected by the vertical profile of leaf area, even if the total amount of leaves in the
canopy remains the same [Wu et al.,, 2000]. Because of the difficulty of directly measuring such distributions
(for tropical forests in particular, there is to our knowledge only one study that has ever directly measured
landscape leaf area index by harvesting vegetation in multiple vertical profiles [Clark et al., 2008]), indirect
methods have been developed to estimate leaf area index from optical instruments [Chen et al., 1997] and
satellite-derived vegetation indices. However, these methods tend to systematically underestimate leaf area
index and have important shortcomings for assessing spatial variability [Olivas et al., 2013]. For example, passive
remote sensors often suffer from signal saturation [Gamon et al., 1995], which limits insights into both vertical
and horizontal spatial variabilities. The ground-level measurements tend to underestimate leaf area in the
upper canopy [Parker et al., 2004; Hosoi et al., 2013] and require knowledge of leaf clumping. However, small
detectable differences in radiation measurements may correspond to larger differences in leaf area.
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Figure 1. Example of a forest point cloud obtained using an airborne discrete-return lidar above a hectare of tropical
forest on Barro Colorado Island. Colors indicate height (m). The vertical distribution of points by return number is also
shown for reference.

Airborne waveform light detection and ranging (lidar) systems provide important advantages for capturing
forest structural complexities in 3-D [Asner et al., 2012a, 2012b)], as lidar records the entire backscattered signal
of each emitted laser pulse [Wagner et al., 2004]. Waveform lidar data are often decomposed into their
components of echoes characterizing different targets along the path of the laser beam [Wagner et al., 20071,
thereby producing discrete-return data (e.g., Figure 1). First returns originate from the first objects that a laser
pulse encounters, often the upper part of a vegetation canopy. In contrast, second and later returns originate
from the portion of a pulse passing through gaps or being transmitted by leaf tissues into lower vegetation
layers, eventually reaching the ground surface. The penetration capability of waveform lidar can thus overcome
the problem of signal saturation and clumping, enabling a better characterization of spatial and temporal
variability of foliage distribution.

Lidar has been used in a wild range of applications related to forest ecology [Lefsky et al., 2002], including
(but not limited to) estimation of aboveground carbon stocks [Asner et al., 2010] and their spatial and
temporal variation [Mascaro et al., 2011; Detto et al., 2013; Meyer et al., 2013], characterization of animal
habitats, and quantification of landscape fragmentation [Flaspohler et al., 2010; McMahon et al., 2015].

We can heuristically interpret the laser point cloud derived from a small-footprint (< 3 m resolution) lidar as a
set of points obtained by penetrating the forest canopy with a needle-like beam. Each point associated with the
kth return is the intersection between the canopy element and the penetrating beam at the kth contact. This
simple idealization does not consider the intensity of the return and focuses solely on three factors: foliage
spatial arrangement including (i) leaf orientation and (ii) clumping and (iii) laser scan angle. The needle analogy
suggests that the lidar point cloud be analyzed as a stochastic point process [Daley and Vere-Jones, 2003].

Several methods have been developed to relate statistical properties of the lidar point clouds with
statistical properties of the underlying vegetation. These include empirical (phenomenological)
approaches [Richardson et al., 2009; Zhao and Popescu, 2009; Hardiman et al., 2011; Stark et al., 2012] as
well as physically based approaches such as ray tracing models and analytical or semianalytical
radiative transfer models [Ni-Meister et al., 2001; Kotchenova, 2003; Béland et al., 2014], the latter being
the focus of this study. The equations for radiative transfer in a stochastic medium were presented by
Titov [1990] for scattered clouds and then applied to discontinuous canopies by Shabanov et al. [2000].
In their approach, foliage is represented by a spatial stochastic function with known statistical
properties, in particular the first and second moments, which describe the foliar vertical profile and
clumping, respectively.

Here we develop a modified version of the radiative transfer model described by Titov [1990] and Shabanov
et al. [2000] for small-footprint, multireturn lidar data that enable estimation of leaf area index (LAl) and leaf area
density (LAD), and its variation in 3-D space. We first apply this model to simulated data sets to evaluate its
precision and accuracy (errors and biases) under ideal conditions as a function of canopy complexity, pulse, and
return numbers. Then, we apply this model to an empirical case study of airborne lidar data for a moist tropical
forest, thus demonstrating its ability to estimate vertical and horizontal variability in LAD.
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2. Methods and Data
2.1. Theory: Stochastic Radiative Transfer Model

We represent foliage spatial arrangement as a stochastic process described by the indicator function p(x),
which is equal to 1 if there is a leaf in a volume element including x (x,y,z) and 0 otherwise. Each foliated point
is characterized by a leaf area volume density a,, defined as the expectation of the one-sided leaf area per
unit volume with leaves, and a leaf inclination angle, defined as the angle between the leaf surface normal
and the zenith [Ross, 1981]. Assuming horizontal homogeneity, the leaf area density, u(z), at any depth z into
the canopy is defined as

U(Z) =aP, [p(X7y>Z) = 1] = aLEz[p} (1a)

where P,[.] and E,[.] are probability and expectation taken over a horizontal plane at depth z (z=0 corresponds
with the top of the canopy). Similarly, the effective leaf area density, ug(z, Q), the projection of foliage area in a
unit of volume in the beam direction Q = (. Qy,9Q;), is defined as

Ug <z, 5) = G(z, 5>u(z) (1b)

where G(z, ﬁ) is the estimated projection function of the leaf area in the direction 9 per unit leaf volume,
which depends on the leaf inclination angle distribution function as defined in Ross [1981]. The spatial
distribution of foliage is described by the pair correlation function g(z, z’,ﬁ) which is the normalized
expected value of the product of p(x) taken at two planes z and Z' in the direction of the beam aQ

E; {p(x,y,Z)p <X + S32{2',)/ + %ZZ)}

E.JplE. ] @

g(z7z' 5) =

g(z,z, ﬁ) is equal to 1 if the leaves are randomly distributed (e.g., Poisson process) and generally > 1 for
clumped distributions (e.g., negative binomial process).

The stochastic radiative transfer for uncolloidal radiation, i.e, beams that do not interact with leaves,
associated with the kth return (k=1, 2, ...), is well described by the a system of Volterra integral equations
[Titov, 1990; Shabanov et al., 2000], modified to take the return number into account (Appendix A):

I(z7 5, k) =1 (5) — ‘,u <§) ‘71J;u(z')6<z', ?2) U(z'7 ?2,k) dz (3a)

Zk: U<z, ﬁi) = Uy (5) — ‘,u(?)) ‘_1I(z)g<z,z'7?2>u(z')6(z', §)U<z' 57 k) dz (3b)

where /(z, 57 k) is the mean radiation which penetrates to depth z in the direction G associated with the kth
return and U(z, ?27 k) is the mean incident radiation intercepted by the canopy per unit of leaf area at
depth z in the direction Q associated with the kth return; |y(ﬁ)| is the cosine of the polar angle in the
direction Q. To summarize, equations (3a) and (3b) say that the mean radiation and the mean radiation per
unit of leaf area at any depth z equals the mean radiation at the top of the canopy, lo(ﬁ) and Up(Q),
respectively, minus a term which describes the mean radiation that has been intercepted between 0 and z.

2.2. Sampling by a Marked Point Process

Imagine the penetration of a forest canopy with beams and recording of the positions leaves are intersected.
Each of these actions can be regarded as a realization of a marked point process defined by three random
variables: {, p, and 6, indicating the vertical coordinates of the point, the sequential position along the beam
(return number), and the beam inclination (scan angle), respectively. Given a statistically representative
number of these realizations, the penetration functions at depth z;, [;;x and U;, associated with the kth
return can be estimated from the following probabilities:

i P(z<z,q=s,r=k S injsk
Lk:—l_ ( i»q ) ):1_ jn:'l ;S (4a)
los P(g=s,r=1) X7 Njs
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(4b)

where n; is the number of points in the interval (z;— dz z] with angle s and return number k.

The ratio /;5 x/lo,s can be interpreted as the probability for a beam with angle s to intercept fewer than k leaves
up to depth z;. For k=1, I;51/lo,¢ is the proportion of beams which are not intercepted by leaves (gap fraction).
The ratio U;/Uo,s can be interpreted as the probability for a leaf at depth z; to be the kth contact along the
beam path. For k=1, U1 /Uqs equals the proportion of the leaf area which is directly exposed to radiation
(sunlit leaves).

Because of laser beam attenuation, only points up to a maximum return number k. can be detected, and
equation (4b) needs to be modified considering the following identity:
P(p = k)
P(p =k|p<k =
(,0 ‘p— max) P(pSkmax)
Approximating equation (3b) with g ~ 1, a correction factor that takes into account a limited number of
available returns can be applied to Uj;/Uosa as

Ui,s,k - ni,s,k Ii‘s,kmax

UO,s " Koo lO,s
Njsj
j=1

(see Appendix B for details).

2.3. Numerical Solutions

Solutions of equation (3a) are obtained by discretizing the system at regular intervals with step dz (z;i=1,2,...,m).
A simple forward scheme provides the numerical solution of u; for any given scan angle:

i—1
0(,‘,5 — Z Uj ﬂ/ﬁsdz
j=1

Ui =

:BiAsdz
where
z ,'::1”1',5"
Ais = —m (7a)
j=11jsa
i
b — Gi,S Nisa 1 zj=1nj~5=kmax (7b)
is — k - m
|cos(s)| zxmrni i T 2115 K
When the observations are taken at different scan angles, o and f can be computed as ensemble:
%0 S _.n
—11js1
a=13 = (8a)
=021 Njs1
i m
by — 920 Gis Njs < zj—‘lnj‘&kmax) 2 iLqNjsa (8b)
=5 Kmax py. TSM %
5=0 ‘COS(S)| Zk:{n,,s,k 21:1 N s kmax zozjfl1 njsa
s=

Commented MATLAB code to do these calculations is provided in Data Set 1 in the supporting information.

2.4. Simulated Data Sets and Their Analyses

We first tested the inversion algorithms on simulated data sets. To generate a strongly clustered distribution of
geometrical elements, we used a family of point processes called the Shot Noise Cox Process (SNCP) [Maller, 2003],
whose statistical properties are known (Appendix C). The SNCP can generate a large variety of clumped and
inhomogeneous distributions. Its parameters can be loosely related to ecologically meaningful quantities (e.g.,
crown size, stem density, and dispersal distance; Table 1), and for this reason it is often used in spatial ecology [e.g.,
Henrys and Brown, 2009; Wiegand et al., 2009]. Because we are assuming horizontal homogeneity and isotropy in
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Table 1. Model Parameters and Ecological Meaning for Simulated Datasets

Parameter h a,c b, d l r

Description Stem density  Mean crown  Allometric coefficients Allometric exponents Leaf size (length) Vertical/horizontal
height for crown size, density  for crown size, density crown anisotropic ratio

Vertically homogeneous 152 0.5, 1 0.0, 0.0 0.1 2

Vertically inhomogeneous 5 2 0.5, 1 02,20 0.1 2

@Uniform distribution.

Exponential distribution.

azimuthal direction, we realize the point process in two dimensions only, for easy implementation and
computational efficiency, over a horizontal distance of 200 m. At each point representing the centers of segments,
a random “leaf” inclination drawn from a spherical distribution was assigned to each segment.

We simulated vertically homogeneous and vertically inhomogeneous forest structure (Figure 2) with LAl of 2, 4,
or 6, for a total of six different sets of simulations. To compute relevant statistics, each set of simulations
comprised 1000 realizations. For each simulation, 4000 rays were traced from the top of the canopy starting at
locations drawn uniformly along the horizontal axis (0 and 200 m) and with angles drawn from a discrete
uniform distribution in the interval £20°. Periodic conditions were applied to the boundaries. The positions
where the rays intersect the leaves were recorded up through the tenth contact.

LAl and LAD profiles were estimated from these simulated lidar data using the algorithms given above. Bias and
error in LAl were evaluated for varying number of returns used and for different numbers of pulses (250, 500,
1000, 2000, and 4000 pulses) for each set of simulations. Specifically, relative bias was defined as the mean
difference between the estimated and true values divided by the true value; relative error was defined as the
standard deviation of the estimates divided by the true value.

2.5. Empirical Case Study

We tested the model at an intensively studied 50 ha forest stand on Barro Colorado Island (BCl), Panama.
Average precipitation is 2654 mmyr~', with a pronounced dry season between mid-December and end of
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Figure 2. Examples of the two types of 2-D Shot Noise Cox Process simulations used to test the inversion algorithms: (a) a
vertically homogenous simple cluster process and (c) a vertically in-homogenous complex cluster process, along with the
(b and d) associated point clouds for first (blue) and second (red) returns of 1000 pulses. At right are the corresponding
expected (red) and simulated (green) leaf density profiles and the frequency profiles of first and second returns. In both
these cases, the leaf area index is 4 (parameter values in Appendix C).
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Figure 3. Influence of pulse number on the quality of LAl estimates for the two simulated forest types and three different
LAl when using two or five returns. Relative bias is the mean difference between the estimated and true values divided by

pulse number

pulse number

the true value; relative error is the standard deviation of the estimates divided by the true value.

April. Average air temperature is ~ 26°C. The 50 ha plot is located on the top plateau of the island in old
growth forest (> 400 years old), and the plot contains about 300 species of trees and 180 species of lianas,

with diameter at breast height > 1 cm [Hubbell and Foster, 1983; Schnitzer et al., 2012]. In the dry season, 4-8%

of canopy trees are deciduous at any given time [Condit et al., 2000].

The airborne data were collected in January 2012 using the Carnegie Airborne Observatory-Airborne
Taxonomic Mapping System (CAO-AToMS) [Asner et al., 2012a, 2012b]. CAO-AToMS includes a dual laser,

waveform lidar carried on a Dornier 228-202 aircraft. We collected AToMS data over the Barro Colorado 50 ha

plot from an altitude of 1000 m above ground level, at an average flight speed of 55-60 m s and a mapping
swath of 0.6 km. The lidar has a beam divergence set to 0.56 mrad and was operated at 400 kHz.
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Figure 5. Sample ensemble of simulated (blue) and estimated (red) leaf area density profiles for the two sets of simulations
(and LAI=2, 4, and 6) when using (top row) two or (bottom row) five returns, with estimates based on 1000 pulses per
simulation. Dashed lines represent the bootstrapped 95% confidence intervals around the mean estimated value.

Laser ranges from the lidar were combined with embedded high-resolution Global Positioning
System-Inertial Measurement Unit data to determine the 3-D locations of laser returns, producing a
“cloud” of lidar data. The lidar data cloud consists of a very large number of georeferenced point
elevation estimates, where elevation is relative to a reference ellipsoid (WGS 1984). To estimate canopy
height above ground, lidar data points were processed to identify which laser pulses penetrated the
canopy volume and reached the ground surface. We used these points to interpolate a raster digital
terrain model for the ground surface. This was achieved using a 10 m x 10 m kernel passed over each
flight block; the lowest elevation estimate in each kernel was assumed to be ground. Subsequent points
were evaluated by fitting a horizontal plane to each of the ground seed points. If the closest unclassified
point was < 5.5° and < 1.5 m higher in elevation, it was classified as ground. This process was repeated
until all points within the block were evaluated. Total number of points by return were 9,937,508
7,286,222 4,158,001 1,851,327, for first, second, third, and fourth return, respectively, for a total of
23,233,058 points, covering an area of approximately 50 ha.
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Figure 6. Nonuniform spatial sampling distribution of airborne lidar over the 50 ha plot on Barro Colorado Island, for first
return density and mean scale angle at 1 x T m resolution (distance in meters). Frequency histograms for pulse density
and all scan angles are also shown. Nonuniform sampling is inconsequential for estimating penetration functions if the
sampling is uncorrelated with underlying forest structure, i.e., Io(Q) = Up(Q).

We evaluated the distribution of lidar sampling pulses and scan angles across the 50 ha plot. We then
calculated the first- and second-order penetration functions and their variation with scan angle. Next, we
applied the above algorithms in combination with several alternative assumptions about leaf angle to
estimate LAD profiles using data for different numbers of returns. We used three theoretical leaf angle
distributions described in de Wit [1965]—the spherical, erectophile, and planophile. In addition, we used a
Campbell distribution [Campbell, 1986] parameterized with height-stratified empirical measurements from a
previous study on BCI [Wirth et al., 2001]. Finally, we divided the plot into 50 X 50 m quadrats and estimated
LAl and LAD for each quadrat under the assumption of a spherical leaf angle distribution.

3. Results
3.1. Simulated Data Sets

For the vertically homogeneous forest structure scenario, relative bias in LAl was near zero and error was less
than 5% for samples of 1000 or more pulses (Figure 3). For the vertically inhomogeneous forest structure
scenario, relative bias was large for dense canopies and low return numbers (12% with two available returns)
but decreased nearly to zero when five returns were available. Errors were somewhat larger than in the
homogeneous case but decayed in a similar manner and were below 8% for samples of 1000 or more pulses.
Biases were relatively insensitive to pulse number. The use of information from greater numbers of returns
reduced the size of biases, especially in the vertically in-homogenous forest structure scenario, although
there were decreasing gains from additional returns with little improvement beyond four to five returns
(Figure 4). Errors were relatively insensitive to return number.

Leaf area density profiles were generally well described by the numerical solutions (Figure 5). For the
homogeneous forest structure scenario, the largest deviations were at low heights in dense canopies with
only two available returns. For the inhomogeneous forest structure scenario, there was underestimation even
high in the canopy for dense canopies with only two available returns, but including more returns almost
completely removed this bias.
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Figure 7. The mean (a) first-order penetration functions and (b) second-order penetration functions for different return
number k. Bold lines are computed as means over all scan angles; dotted lines represent profiles for different scan
angles. (c, d) The variation in the first return penetration functions with scan angle, that is, variation with scan angle in the
proportion of beams which are not intercepted by leaves (gap fraction, Figure 7c) and in the proportion of the leaf area
density which is directly exposed to radiation (sunlit leaves, Figure 7d).

3.2. Case Study of Airborne Lidar for a Tropical Forest

The airborne lidar sampling was not uniform over the 50 ha field plot. Pulses per square meter varied from
0 to 100 with mean 16. Scan angles spanned +21°. Large-scale heterogeneity was clearly related to flight
lines (Figure 6). The distribution of number of first returns per square meter was approximately lognormal, while
the distribution of scan angles was relatively uniform (Figure 6).

The median height from the ground at which the first pulses were intercepted was 25 m, and less than 1% of
the first returns reached the ground surface (Figure 7a). At a height of 23 m, foliage had a 50% probability
of being in direct sunlight and a 33% probability of being the second intercepted object (Figure 7b). These
first- and second-order penetration functions showed some variation with scan angle (Figures 7c and 7d).

Estimated LAD profiles varied considerably depending upon the assumed leaf inclination angle distribution
functions, as would be expected (Figures 8a and 8b). Estimates using just first and second returns showed
higher leaf density at lower layers than those using more returns (Figures 8c and 8d).

Estimates of LAl for 50 x 50 m quadrats showed twofold spatial variation across the plot (Figure 9).
Confidence limits on the mean distribution were nevertheless quite low (Figure 9).

4, Discussion

The new modeling approach presented here enables quantification of local spatial variation in leaf area density
from small-footprint, multireturn lidar data, at spatial scales previously inaccessible using field studies. The new
algorithms also provide a means to assess the sensitivity of such lidar to forest structural variation more

generally. Our results suggest that utilizing the capability of multireturn, rather than one lidar data, reduces bias
and errors in LAD estimation. Reasonably good LAD estimates (error SD < 10%) were obtained with 500 or more
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Figure 8. (a, b) Estimated leaf area density using different leaf inclination distribution functions. Wirth et al. [2001] used
actual measurements of leaf inclination angles taken on Barro Colorado Island. (c, d) Estimated leaf area density for
different maximum number of returns and spherical leaf angle distribution.

pulses in a simulated stand. Importantly, these simulations showed that the inversion algorithm was robust
to forest structural complexity, although strong clumping and vertical inhomogeneity reduced performance,
especially when beams have to pass through dense vegetation layers, as would be expected.

Applying our model to actual airborne lidar data revealed interesting forest structural properties that have
not been assessed using field or other remote sensing techniques. On average, the first-order penetration
functions, I; s/l s (the proportion of beams which are not intercepted by leaves), decayed monotonically and
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Figure 9. (left) Map of estimated LAl for 50 x 50 m quadrats and (right) the average of quadrat-level LAD profiles, with 95%
confidence interval based on bootstrapping over 50 X 50 m quadrats. These estimates are based on the assumption of a
spherical leaf angle distribution.
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exponentially, as expected (Figure 7a). However, the second-order functions, U; «/Uo,s (the proportion of LAD
directly exposed to radiation), had a more complex pattern (Figure 7b). This vertical pattern can be attributed
to emergent tree crowns, which generated strong clumping in the upper canopy, thereby reducing U; s «/Ug s
more rapidly than /;5/lo,s. In the lower layers, U; s «/Uo s increased in some cases and then decayed almost
linearly and less rapidly than /;5 /Iy 5, suggesting that the lower canopy tended to occupy gap (open) areas to
minimize local-scale shade from upper layers.

LAl showed large variation within the 50 ha study area, with twofold variation even when computed at the
fairly course spatial grain of 50 x 50 m (Figure 9). Such variation has potentially important implications for
upscaling ecosystem functions from leaf to stand levels, because the function of the average is not equal to
the average of the function for the relevant nonlinear processes [Rastetter et al., 1992]. This suggests the need
for further studies to better characterize and understand patterns of spatial variation in LAD. The observed
spatial pattern of variation in LAl across the BCl 50 ha plot tracks topographic variation across the plot to
some degree. Post hoc analyses revealed positive correlations between LAl and canopy height (results not
shown). Future analyses should further explore predictors of LAD profiles within and across stands.

Penetration functions varied with scan angle, with a distinct and almost symmetric pattern (Figures 7c and
7d). More vertical scan angles allowed for more penetration of lidar beams. Penetration decreased at around
+13° but increased again for steeper angles. This result is inconsistent with radiative transport theory, which
predicts a decrease in the penetration function with beam inclination, because forest optical thickness
becomes larger and clumping effects become less important [Ross, 1981]. A possible explanation for this may
be traced to the lidar footprint growing in cross section at higher scan angles, increasing the penetration
capability of the beam. Differences among scan angles can also be attributed to spatial variability in the study
area, as tall emergent trees are sporadically distributed and the distribution of scan angles varies
systematically in space depending on position relative to the flight lines (Figure 6).

The assumed leaf inclination model constitutes a great source of uncertainty, requiring knowledge of
the vertical variation of leaf inclination angle per species. Uncertainty in leaf inclination angle directly
affects LAD estimates because of the proportionality between the effective (projected) LAD and
(unprojected) LAD through the G-function (equation (1)). Wirth et al. [2001] used vertically stratified
leaf inclination angle measurements and a simple light attenuation model to calculate LAl of around
5.1 for a small plot (0.21 ha) in another part of BCl during the dry season (and 5.4 in the wet season).
Our estimation based on the leaf inclination measurement of Wirth et al. [2001] produced an LAl value
of about 4.0 averaged over the entire 50 ha plot. However, assuming a spherical leaf inclination
angle distribution with no vertical variation resulted in an LAl of ~5.2. A recent study suggests that a
spherical leaf inclination angle distribution is a poor model for temperate and boreal forests [Pisek

et al., 2013], and our leaf inclination angle measurements from eleven species on BCl suggest the same
(Appendix D). The measured leaf angle distributions varied substantially among species and with
height above ground (Tables D1 and D2). Furthermore, horizontal heterogeneity of mature tropical
forests, as on BCl, can be quite large due to interspecific and environmental variation in leaf inclination.
For example, leaves in gaps are generally more steeply inclined than leaves at the same height under
closed canopies [Millen and Clendon, 1979; Falster and Westoby, 2003].

Although there is no direct measurement of LAl for BCl for the same area and time to use as a basis of
comparison, our estimated LAl appeared to be on the lower end for type of moist old growth forest, at least in
broad comparison to other tropical forests [Asner et al., 2003]. The way the lidar waveform is acquired and
processed may contribute to potential LAl underestimation due to missing target detection. A missing
detection can happen when the signal fails to trigger a recording at the lidar receiver, or if the target is
marginally hit, or if multiple targets are very close to one another along the path of the laser beam. The
problem becomes increasingly acute for second and later returns because their signal-to-noise ratio is
progressively smaller. Notably, including third and fourth returns significantly reduced LAl and LAD
estimation (Figure 8), regardless of the leaf inclination angle model, which is inconsistent with simulations
(Figures 4 and 5). Because the number of returns only marginally improves model performance, and third and
fourth returns are prone to systematic errors, we recommend using only the first and second returns and
applying a 10-15% correction for the bias observed in simulations (inhomogeneous simulation results
for estimates based on two returns; Figures 3 and 4). Another issue for future consideration is the
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sensitivity of the laser receivers relative to the power of the laser transmitters. These issues affect both
the penetrability of the vegetation (power) and the ability to digitize the presence of foliar tissues at
depth in the canopy. There is no one combination that is known to be optimal for small-footprint
applications of lidar to forest canopies, but it does have an effect on estimates of canopy structure and
derived products such as biomass [Asner and Mascaro, 2014]. Further methodological exploration should
be directed to understand systematic errors caused by lidar sampling and processing, which may
provide a way to correct biases in LAD estimation.

5. Conclusions

We developed a method to estimate the leaf area density and leaf area index of vegetation canopies using
multireturn lidar data. Our method, based on radiative transport theory, can be easily applied to other lidar
systems, both airborne and terrestrial, with the only difference being that the orientation of equations (4a) and
(4b) needs to be adjusted. The proposed approach goes beyond the simple estimation of leaf area density by
providing a meaningful counting method for multireturn lidar point clouds in the context of laser return number
and scan angle. Of particular ecological interest is the normalized second-order function, U(z, s, k)/Uy(s), basically
the proportion of illuminated leaves at any depth in the canopy. It is related to the probability of a leaf to have
one, two, or more leaves along the radiation path, and thus, it is closely related to light competition. Together, I(z,
s)/lo(s) and U(z, 5)/Uq(s) are strong candidates for being good descriptors of forest spatial organization around
limited light resources, although they are restricted to uncolloidal radiation fields. The algorithms developed
here provide a solid basis for future studies of spatial variation in complex forest canopies, studies that promise
insights into the organization of foliage and improvements in tools for upscaling from leaf to stand scales.

Appendix A: Stochastic Integral Radiative Transfer Equations for Penetration
Functions Associated With a Multireturn Laser Beam

At each point in the canopy space, the intensity of the uncolloidal radiation associated with the kth return in
the direction Q equals the radiation at the top of the canopy plus an integral term that describes that
radiation intercepted up to z. The intercepted term can be expressed as the difference between the radiation
intercepted by the kth return and the radiation intercepted by the (k — 1)th return, because this fraction of
the radiation in reality passes through. So we can write

Z

Jk) (x, .2, Q) +a I (X + 27y + —yz',z') G(z' Q)I(k) (x + X y+2L 7, Q) dz
lu| y Pt vty o’ o,

z Q Qy ' g k— €y Q = =
- +—=y+= G< ,Q)l( DX, +=y +-27,Q)dz = |ull (Q)
aLJ’0p<x ) y Zz) b4 X Zy ) Z Z' = |u|lo

using the spatial average

(A1)

i (2,0) + IZU(Z')G(Z'7 QU (7 6)dz = |ulio(2) (A2)
where

Ip(x,y,Z) (/(k) (x.y,2,Q) — 1" V(x,y,z, Q))dxdy

u® <z 5) (A3)
[px.y. 2)dxdy
The second-order moment equation is derived multiplying equation (A1) by p(x, y, 2)
pix.y. 2lull¥ (x.y,2.9) + a plx.y.2p(x.y.2)G(z. QY (x.y. 2, Q)de
0
z (A4)
—ai[ plx.y,2)px.y. 2)6(2, 1"V (x,y,2,Q)d7 = aip(x,y,2)|kllo(@)
and taking the spatial average and dividing by |p(x, y, 2)dxdy:
ko ' '
]y U (z,Q) + f59(2, 7 —Q)u(2)G (2, @)UY (Z,Q)dz = |u|Uo(z, ) (AS)
=
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In deriving (A5), we have used the following closure assumption:
2
%Ip(x,y, 2)p(x,y,2)10 (x,y, 2, Q)dxdy ~ g(z,2)u(z )u(z)U¥ (2, Q) (6)

Note that in the case that the incident radiation field at the top of the canopy is uncorrelated with forest
structure, Uy(z, Q) = lo(z, Q).

Appendix B: Estimation of Mean Intercepted Radiation per Unit of Leaf Area With
Incomplete Return Numbers

In the case when all return numbers are available, the mean intercepted radiation per unit of leaf area
associated with return number k can be estimated from the probability

Yeskl _p,—kc=z0=5). o
Uo

For k=1, the above relationship expresses the conditional probability that given a leaf at depth z, there
are no leaves above. In other words, it is the ratio between sunlit and shaded leaf area. When only
points with return numbers up to k.,ax are available, the estimated probability is related to the total
probability by

P(p:k|(:279:_§)

Plp=k|{=20=sk<Kkmm) = B2
(,0 |( z, S, K= max) P(Pfkmax|C:Z,0:5) (B2)
Here P(p < kmax|C =2, 0=5) can be expressed as the sum of the k., normalized U functions:
Kmax Kmax
Plp<kmall =2,0=5)=> P(p=il{=20=5)=> Uzs,1i) (B3)
i=1 i=1
Using equation (3b) in the main text, this term equals
kmax
ZU(LSJ) Uo(s) — |cos(s) I 9(z,7,s)u(z)G(z,s)U(Z, s, kmax)dZ' (B4)

i=1

If we assume for the purpose of deriving a correction factor that g(z, Z, s) = 1, we can substitute the integral in
the left-hand side of the above equation using equation (3a)

Kmax

Z U(z,s,i) = Uo(s) — Io(s) + 1(z, 5, Kmax) (B5)

In the case Uq(s) =1o(s), i.e., radiation at the top of the canopy is independent on forest structure,

Kmax
Z U(z,s,i) = I(z,s,kmax) and it follows that
i=1
U(z,s,k)
Uo

I(Z7 57 kmax)

zP(p:le:Z,g:S,kSkmax) IO(S)

(B6)

(z S, Kmax)

If the probability to find a point with return number kp,.x above depth z is negligible, i.e., ) ~1,

the number of available returns is sufficient to represent the forest structure and the correction has
no effect.

Appendix C: SNCP

A Shot Noise Cox Process is a random spatial process Z(x) on a d-dimensional Euclidian space defining
a set of points (offspring or leaves) conditional on another set of points (parents or crown centers)
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Table D1. Species-Specific Statistics of Leaf Inclination Measurements Made Using a Leveled Digital Camera, Including
Parameters of Best Fit Beta Functions

Species Name Count Mean SD U v

Desmopsis panamensis 261 26.27 14.02 2.19 5.32
Eugenia galalonensis 155 25.59 14.42 1.97 4.96
Eugenia oerstediana 462 27.51 14.99 2.03 461
Faramea occidentalis 285 22.28 12.98 1.97 5.98
Hybanthus prunifolius 78 15.60 10.80 1.55 7.40
Inga umbellifera 811 34.86 19.57 1.56 2.46
Luehea seemannii 345 30.75 15.49 2.25 4.34
Mouriri mytilloides 286 21.42 14.08 1.52 4.88
Swartzia simplex 192 21.48 14.58 1.41 4.51
Triplaris cumingiana 194 44.05 15.85 3.46 3.60

{p; j=1, 2, ...} [Maller, 2003]. For simplicity we consider a bidimensional case, x=[x z], in the horizontal and
vertical axis. We can express Z(x) as

Z(x) =Y _1k(py. 05.%) o)
J

where k(c, x) is a kernel density function with dispersal parameter ¢ = [0, 0] describing the distribution of
leaves around the crown centers in the vertical and horizontal directions and y is the expected number of
leaves per crown. The crown centers are distributed as an inhomogeneous Poisson process with intensity
function depending only on z. We consider two distributions: uniform and exponential

u

£ o<z<2h
C‘(z): 2h ‘

0 z>2h (C2)
L) =pe

where u is the stem density and h the mean height of the crown centers. The dispersal parameters also
depend on height from the ground according to allometric relationships o, = azb, ay=razb, where ris an

anisotropic parameter allowing for crown stretching/compressing in the vertical direction. y also follows an

allometric relationship y=c d

If ¢, is the size of one leaf, the leaf area index (LAI) can be computed as
LAl = KLIC(z)y(z)dz (C3)

The first- and second-order intensity of a SNCP can be expressed as [Maller, 2003; Henrys and Brown, 2009]

Table D2. Statistics of Leaf Inclination Measurements Made Using a Leveled Digital Camera, Including Parameters of Best
Fit Beta Functions, By Height Class

Height (m) Count Mean SD U v

0-2 263 22.49 13.27 1.90 5.72
2-4 447 23.99 14.68 1.69 4.65
4-6 562 2252 13.66 1.79 5.36
6-8 264 21.71 14.18 1.54 4.84
8-10 188 23.23 14.24 1.72 4.93
10-12 160 26.68 14.21 2.18 5.18
12-14 106 28.62 14.57 231 4.96
14-16 238 33.23 15.68 247 4.21
16-18 226 39.56 15.33 3.29 4.20
18-20 255 41.11 16.94 2.74 3.26
20-22 184 38.94 20.61 1.59 2.09
22-24 176 43.08 20.38 1.85 2,02
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Aa(z1,2
Along the vertical direction, leaf area density u(z) and pair correlation function g(z;,2,,0) = 1 +)(22(1)+,(222))

can be computed numerically using a Gaussian kernel G(z) from the following integrals:
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Appendix D: Leaf Angle Distribution

In March 2013, leaf inclination angles of 10 BCI tree representative species on BCl were measured at 2m
height intervals using digital photography following the approach first introduced by Ryu et al. [2010] and
evaluated by Pisek et al. [2011]. For each species we calculated mean and standard deviation of the leaf angle
distribution and fitted a beta distribution.
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