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Abstract
1.	 Dispersal and density dependence are major determinants of spatial structure, pop-
ulation dynamics and coexistence for tropical forest plants. However, because 
these two processes can jointly influence spatial structure at similar scales, analys-
ing spatial patterns to separate and quantify them is often difficult.

2.	 Species functional traits can be useful indicators of dispersal and density depend-
ence. However, few methods exist for linking functional traits to quantitative esti-
mates of these processes that can be compared across multiple species.

3.	 We analysed static spatial patterns of woody plant populations in the 50 ha Forest 
Dynamics Plot on Barro Colorado Island, Panama with methods that distinguished 
scale-specific differences in species aggregation. We then tested how these differ-
ences related to seven functional traits: growth form, dispersal syndrome, tree 
canopy layer, adult stature, seed mass, wood density and shade tolerance. Next, we 
fit analytically tractable spatial moment models to the observed spatial structure of 
species characterized by similar trait values, which allowed us to estimate relation-
ships of functional traits with the spatial scale of dispersal, and the spatial scale and 
intensity of negative density dependence.

4.	 Our results confirm that lianas are more aggregated than trees, and exhibit in-
creased aggregation within canopy gaps. For trees, increased seed mass, wood 
density and shade tolerance were associated with less intense negative density 
dependence, while higher canopy layers and increased stature were associated 
with decreased aggregation and better dispersal. Spatial structure for trees was 
also strongly determined by dispersal syndrome. Averaged across all spatial scales, 
zoochory was more effective than wind dispersal, which was more effective than 
explosive dispersal. However, at intermediate scales, zoochory was associated with 
more aggregation than wind dispersal, potentially because of differences in short-
distance dispersal and the intensity of negative density dependence.

5.	 Synthesis. We develop new tools for identifying significant associations between 
functional traits and spatial structure, and for linking these associations to quantita-
tive estimates of dispersal scale and the strength and scale of density dependence. 
Our results help clarify how these processes influence woody plant species on 
Barro Colorado, and demonstrate how these tools can be applied to other sites and 
systems.
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1  | INTRODUCTION

Spatial patterns encode information about the processes that form 
them. Studying species spatial distributions can therefore yield insight 
into their ecology. In plant populations, two major processes, disper-
sal and density dependence, have particularly profound influences on 
spatial structure. Dispersal reduces clustering by separating reproduc-
tive individuals from their offspring. Negative and positive density 
dependence can reduce or increase clustering, respectively, by either 
limiting or enhancing recruitment success and survival around existing 
individuals (Bolker & Pacala, 1999). Negative density dependence and 
short-distance dispersal can promote high diversity by restricting the 
abundance of common species (Detto & Muller-Landau, 2016; Janzen, 
1970). These processes are thought to be particularly important in 
diverse tropical forests (Bagchi et al., 2011; Comita, Muller-Landau, 
Aguilar, & Hubbell, 2010; Harrison et al., 2013; Kunstler et al., 2015; 
Seidler & Plotkin, 2006).

While it is easy to predict how individual processes influence spatial 
structure in theory, determining the relative influences of multiple pro-
cesses from observed patterns is challenging for a number of reasons. 
First, similar spatial structure can be generated by different combinations 
of clustering and disaggregating processes (Bagchi et al., 2011; Beckman, 
Neuhauser, & Muller-Landau, 2012; May, Andreas & Wiegand, 2015; 
Muller-Landau, Wright, Calderón, Hubbell, & Foster, 2002; Seabloom, 
Bjørnstad, Bolker, & Reichman, 2005). For example, spatial aggregation 
in a population may be indicative of short-range dispersal, positive den-
sity dependence or a mixture of both processes (Scanlon, Caylor, Levin, 
& Rodriguez-Iturbe, 2007). Furthermore, spatial structure varies depend-
ing on the scale at which it is observed. For example, a checkerboard is 
homogeneous at the scale of a single grid cell, aggregated at the scale 
of a few cells, and uniformly distributed at larger scales. Finally, analyses 
of spatial patterns of species that are strongly associated with particular 
environments, such as canopy gaps or specific soil or hydrological condi-
tions, can be confounded by the spatial distribution of the environmental 
variable (Dalling et al., 2012; Seabloom et al., 2005).

Previous studies have attempted to address these challenges in 
two major ways. First, methods that examine spatial structure across 
multiple scales are often better able to separate influences of different 
processes (Detto & Muller-Landau, 2013; Getzin, Wiegand, & Hubbell, 
2014; Seidler & Plotkin, 2006). Second, methods that link functional 
traits to potential mechanisms that enhance or decrease dispersal 
and density dependence (Augspurger & Kelly, 1984; Kunstler et al., 
2015; Muller-Landau, Wright, Calderón, Condit, & Hubbell, 2008), or 
to particular kinds of spatial structure (Getzin et al., 2014; Hubbell, 
1979; Seidler & Plotkin, 2006), can be used to associate differences 
in spatial patterns with potential underlying mechanisms. These meth-
ods have made substantial progress in determining which kinds of 

processes are important determinants of observed spatial distribu-
tions. Nevertheless, few existing studies have used observations from 
static spatial patterns to quantitatively compare the relative influences 
of dispersal and density dependence across multiple species.

Studies of spatial structure are particularly well-developed for large-
scale surveys of plant species populations, such as the Forest Dynamics 
Plot on Barro Colorado Island (BCI) (e.g. Bagchi et al., 2011; Comita et al., 
2010; Dalling et al., 2012; Getzin et al., 2014; Harms, Wright, Calderón, 
Hernández, & Herre, 2000; Seidler & Plotkin, 2006). Data from BCI 
includes spatially explicit surveys of tree (Condit, 1998; Condit et al., 
2012; Hubbell, 1999) and liana (Schnitzer et al., 2012) distributions, and 
comprehensive information about species functional traits (Croat, 1978; 
Hubbell & Foster, 1986; Muller-Landau et al., 2008; Wright, Calderón, 
Hernandéz, Detto, & Jansen, 2016; Wright et al., 2010). Here, we use 
these data to detect and quantify associations between functional traits 
and spatial processes that influence woody plant species distributions 
on BCI. To do this, we extend recently developed methods for quan-
tifying spatial variability across multiple scales using wavelet variance 
(Detto & Muller-Landau, 2013) to incorporate covariates based on spe-
cies functional traits and environmental heterogeneity.

There are several useful features of wavelet variance which help ad-
dress the challenges outlined above. First, because wavelet variance is 
calculated from Fourier decompositions of spatial data, processes that 
influence spatial patterns at one set of spatial scales do not bias esti-
mates at other scales. Thus, large-scale environmental heterogeneity—
such as variation in habitat type, topography (Dalling et al., 2012) and 
soil nutrients (John et al., 2007) that occur at large spatial scales on BCI 
(generally above 100 m)—does not obscure patterns at smaller scales 
(see example in Appendix S1, A.1.I). Second, wavelet variance provides 
an unbiased estimate of spatial variability, even for very rare species. This 
enables analysis of species with as few as 10 observed individuals (see 
example in Appendix S1, A.1.II). Finally, wavelet variance can be analyt-
ically related to spatial moment models (Bolker & Pacala, 1999; Bolker, 
Pacala, & Levin, 2000; Law & Dieckmann, 2000). These models can be 
fit using standard regression tools (Detto & Muller-Landau, 2013), and 
provide quantitative estimates of the spatial scales of dispersal, and the 
spatial scale and intensity of density-dependent interactions.

We analyse spatial structure and fit spatial moment models to test for 
relationships of aggregation, dispersal and density dependence with seven 
commonly measured traits: plant growth form, dispersal syndrome, tree can-
opy layer, adult stature, average seed mass, average wood density and shade 
tolerance. We test several hypotheses for which there is already empirical 
support from other studies on BCI (Dalling et al., 2012; Ledo & Schnitzer, 
2014; Muller-Landau et al., 2008; Schnitzer et al., 2012; Seidler & Plotkin, 
2006), both as proof of concept, and to corroborate existing results using 
a single set of methods. We also test several hypotheses for which there is 
currently limited empirical support, such as that species with denser wood 
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should be more resistant to pathogens (Augspurger & Kelly, 1984; Chave & 
Leigh, 2002; Kunstler et al., 2015; Wright et al., 2010), and that species with 
larger seeds experience less intense negative density dependence (Lebrija-
Trejos, Reich, Hernández, & Wright, 2016; Muller-Landau, 2010).

By combining analyses across these traits using consistent methods 
and spatial data, we clarify how these processes influence tropical tree 
and liana populations on BCI. In addition to describing differences in ag-
gregation across multiple spatial scales, our results also summarize spatial 
patterns using simple, analytically tractable models of spatial population 
dynamics. These models provide quantitative estimates of how func-
tional traits correspond to differences in dispersal and negative density 
dependence for species on BCI, and demonstrate how these methods 
can be applied to other sites and systems to address similar questions.

2  | MATERIAL AND METHODS

2.1 | Study site

Barro Colorado Island is a 15 km2 island located on the eastern margin 
of Gatun Lake in the Panama Canal (9.9°N, 79.51°W, 140 m eleva-
tion). The island vegetation is lowland moist tropical forest, character-
ized by a 4-month dry season (Leigh, 1999). We utilized data from the 
50 ha (1,000 m × 500 m) Forest Dynamics Plot on BCI, which includes 
species-specific data on distributions of individual trees and lianas 
greater than 1 cm in stem diameter at breast height (DBH) (Condit, 
1998; Schnitzer et al., 2012). The vast majority of the 50 ha plot (96%) 
is old-growth forest (Piperno, 1990).

2.2 | Census data

For trees, we used data from seven censuses conducted between 
1981–1983 and 2010 (Condit, 1998; Condit et al., 2012; Hubbell, 
1999); for lianas, we used data from a single census in 2007 (Schnitzer, 
Rutishauser, & Aguilar, 2008; Schnitzer et al., 2012). For all species, we 
treated stems that were obviously vegetatively connected (either as 
rooted clones or branches) as a single individual, centred at the mean 
coordinates of all combined stems, discretized into a 1 × 1 m grid. To 
ensure unbiased estimates of our spatial statistics, we excluded from 
the analysis species with fewer than ten observed individuals in any 
census year (see power tests in Appendix S1, A.1.II and C.1, and in 
Figure S3). This yielded 254 tree and 130 liana species (78% and 77%, 
respectively, of all species surveyed).

We quantified canopy gap locations based on canopy height surveys 
conducted annually from 1983 to 2010, except for 1994, 1997–1999 
and 2002 (Condit et al., 2012; Hubbell, Comita, Lao, & Condit, 2014). 
Surveys from 1983 to 2002 recorded presence or absence of vegetation 
at the intersections of a 5 × 5 m grid, measured at six heights (0–2, 2–5, 
5–10, 10–20, 20–30 and ≥30 m). We classified locations with no vege-
tation above 2 m as a gap. Surveys from 2003 to 2010 recorded vegeta-
tive percent cover across the interior of the same grid (0–10%, 10–25%, 
25–50%, 50–75% and 75–100%) with seven height classes (0–1, 1–2, 
2–5, 5–10, 10–20, 20–30 and ≥30 m). We classified locations with less 
than 10% cover in all height classes above 2 m as a gap. Less conservative 

cut-offs yielded similar results. To analyse spatiotemporal co-occurrence 
of gaps and species, we discretized stem locations into a 5 × 5 m grid, 
centred over the grid intersections or the centre of the grid cells, respec-
tively, for the two types of gap surveys. Because gaps can turn over in as 
little as a year, trees and lianas in each census were marked as being in 
a gap if they occurred in locations that were recorded as a gap in any of 
the five surveys during or preceding the tree or liana census. We chose 
5 years because it fully captured the conditions between tree censuses, 
though other lag intervals between 1 and 10 years yielded similar results.

2.3 | Trait data

We distinguished trees and lianas following Croat (1978), and further 
divided trees by canopy layer based on maximum adult height into 
canopy (>20 m), midcanopy (10–20 m), understorey (5–10 m) and 
shrub (<5 m) (Hubbell & Foster, 1986). We categorized all species by 
primary dispersal syndrome as bat, bird, non-volant mammal, wind 
or explosively dispersed (Muller-Landau & Hardesty, 2005; Muller-
Landau et al., 2008; Wright et al., 2016).

As a continuous proxy for stature, we used maximum DBH, which is 
strongly and positively related to tree height and crown area (Bohlman 
& O’Brien, 2006; O’Brien, Hubbell, Spiro, Condit, & Foster, 1995). We 
estimated maximum DBH as the 95th percentile of DBH for each spe-
cies, calculated using linear interpolation of the empirical cumulative 
density function with MATLAB’s ‘quantile’ command. For individuals 
with multiple vegetative stems, DBH was estimated from the com-
bined basal area. Dry seed mass was based on the oven-dried (at 60°C) 
mass of endosperm and embryo only (Wright et al., 2010). Seed mass 
and maximum DBH were log10-transformed for all analyses.

Wood density was defined as wood specific gravity measured 
after drying at 100°C (Wright et al., 2010). To define a shade tolerance 
index, we used the first principal components analysis axis derived 
from relative growth rates and annual mortality rates for tree saplings 
(1–4.9 cm DBH) in the 50-ha plot, following Wright et al. (2010). We 
rescaled and standardized the index with zero mean and unit standard 
deviation such that larger values specify lower growth and mortality 
rates, which are associated with greater shade tolerance. Because we 
only had data for a single liana census, we were unable to calculate the 
same shade tolerance index for liana species.

Three pairs of continuous traits were significantly correlated: seed 
mass and wood density (Pearson correlation coefficient ρ = 0.151, 
p = .05), seed mass and shade tolerance (ρ = 0.364, p < .001), and 
shade tolerance and wood density (ρ = 0.473, p < .001).

2.4 | Quantifying spatial structure

We quantified spatial structure for tree and liana distributions on 
BCI using normalized wavelet variance, V, sensu Detto and Muller-
Landau (2013). V describes the intensity with which aggregation or 
disaggregation of individuals occurs across spatial scales for a spatial 
pattern (Bartlett, 1964; Dale & Mah, 1998; Detto & Muller-Landau, 
2013). For a completely random spatial process (e.g. Poisson process), 
the expected value of V is 1 for all spatial scales. Patterns that are 
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more strongly clustered than the random expectation (‘aggregated’ 
patterns) have V greater than one, and patterns that are more spa-
tially dispersed than the random expectation (‘disaggregated’ pat-
terns) have V between zero and one. For more detailed information 
on wavelet variance, see the primer in Appendix S1.

For all analyses, we calculated V at each of 40, log-evenly spaced 
scales between 2 and 115 m. V thus represents the vector of 40 estimates 
of wavelet variance across all spatial scales tested. For trees, where we 
had multiple census years, we calculated separate wavelet variance esti-
mates for each survey year, and analysed averages taken across all years to 
pool information from across the censuses. Note that because all species 
were observed in all years, this did not lead to differences in year-specific 
uncertainties. For lianas, we used estimates from the single census.

To quantify co-occurrence of species with canopy gaps, we calcu-
lated wavelet covariance, VXY, which measures the degree to which 
two spatial patterns co-occur, and is calculated in the same manner 
as univariate wavelet variance, except that it tests for aggregation in 
the product of two spatial patterns (Detto, Muller-Landau, Mascaro, 
& Asner, 2013; Kumar & Foufoula-Georgiou, 1994). As with V, we  
averaged VXY across all survey years for each tree species. Because of 
lower spatial resolution of canopy gap data, we calculated VXY only for 
spatial scales above 10 m.

2.5 | Testing how traits relate to spatial pattern

To test for associations between traits and specific types of spatial 
structuring, we employed a series of nonparametric statistical tests. 
To do this, we calculated a mean estimate of V for each trait value by 
averaging across spatial patterns from species with similar traits, and 
tested whether mean V observed across species in each trait-based 
group was a better predictor of individual species’ V than the grand 
mean observed across all species, regardless of their traits. Similar to 
a classical ANOVA, smaller within-group than among-group variability 
in V indicates that the trait-based groups differ in spatial structure.

For categorical traits, we grouped species into nested subdivi-
sions of categories—e.g. zoochoric (i.e. animal vectored) versus abiotic 
dispersal; zoochoric versus wind versus explosive dispersal, etc. For 
continuous traits, we calculated locally estimated V for each observed 
level of the trait by averaging across species with similar trait values 
(e.g. trees with similar maximum DBH) using a smoothing kernel. This 
generated estimates for V at each spatial scale as a function of the 
continuous trait, similar to results from a loess smoother or other 
nonparametric regression methods. For each candidate grouping of 
species, we calculated the likelihood of observed spatial variability 
based on the mean and variance for observed V within each group 
(e.g. averaged across all species with explosive dispersal, or based on 
the local estimates from the smoothing kernel for a particular maxi-
mum DBH), and compared this likelihood to that of a null model where 
we randomly shuffled trait values among species. For more details on 
grouping methods and likelihood calculations, see Appendix S2, B1.

We report grouping results using the difference in log likelihoods 
L(HA) − L(H0), where L(HA) and L(H0) are the log likelihoods of the data 
under the alternate and null models, respectively. We then selected 

trait-based groupings with the best improvement in likelihood relative to 
the corresponding null model. If likelihoods of multiple potential group-
ings did not differ, we chose whichever contained the fewest traits (i.e. 
the most parsimonious). Finally, we compared mean estimated V from 
each of these ‘best-fitting’ trait-based groupings to test for significant 
differences in V. This determined the significance of differences in spa-
tial structure associated with specific traits measured at specific spatial 
scales, similar to a post-hoc test for an ANOVA such as a Tukey Test.

2.6 | Estimating dispersal and density dependence 
from spatial structure

We fit three nested spatial moment models (see details and derivations in 
Appendix S1, A.2) to the estimated V for each trait-defined group selected 
above. All three are extensions of a simple logistic growth model, with 
added terms describing effects of the spatial second moment (i.e. proximity 
among individuals) on recruitment success. However, rather than model-
ling population size, these models explain differences in spatial structure, 
summarized by the wavelet variance V. Model I describes a population in 
which dispersal is spatially structured, but negative density dependence 
acts ‘globally’ (i.e. at scales larger than 115 m). Thus, while mean population 
size depends on both dispersal and density dependence, V in this model de-
pends only on dispersal (Detto & Muller-Landau, 2013). Model II describes 
populations where both dispersal and negative density dependence act 
locally (i.e. dispersal is limited by distance from reproductive individuals, and 
negative density dependence is more intense when individuals are closer 
together). Thus, V depends on both dispersal and the scale and intensity 
of density-dependent interactions. Lastly, Model III accounts for spatially 
structured dispersal, density dependence and the influence of canopy gaps.

Each of these models incorporates kernels which describe how inter-
action strength declines with distance, and shape parameters which alter 
the spatial scale and intensity of interactions predicted by these kernels. 
For Model I, the expected wavelet variance is relate to dispersal as

where ̃D(cD) is the Fourier transformation of the dispersal kernel, and 

cD is a dispersal distance parameter, and 
̂V indicates a model-based 

estimate of V (Detto & Muller-Landau, 2013). For Model II,

where П1 is an index of the intensity of negative density dependence 
with larger values indicating stronger negative density dependence, 
̃K(cK) is the kernel function describing the spatial scale of density-

dependent interactions, and cK describes the distance at which self-
limitation acts. Note that this relationship is only approximate because 
its derivation relies on a moment closure approximation, and approxi-
mates the effects of species abundance on spatial structure assuming 
long-distance interactions (Detto & Muller-Landau, 2013). Lastly, in 
Model III,

where VNM is the wavelet covariance of species (N) with canopy 
gaps (M), ПH describes changes in species abundance attributable 

̂V1 = 1∕(1− ̃D(cD))

̂VII ≈ 1(1− ̃D(cD) + Π1
̃K(cK))

̂VIII ≈ (1 + ΠH
̃H(cH)VNM)∕(1 − ̃D(cD) + Π1

̃K(cK))
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to the presence of canopy gaps, and ̃H(cH) is the spatial kernel de-

scribing how the influence of canopy gaps declines with distance. 
In all three models, larger cD indicates longer-distance dispersal, 
larger cK indicates that density dependence acts over larger dis-
tances, larger П1 indicates stronger effects of negative density de-
pendence, larger cH indicates that gaps affect species over larger 
distances, and larger values of ПH indicate increased abundance of 
species within canopy gaps.

Model I performed worse than other models for all cases that we 
tested (based on AIC), and we do not discuss it further here. We there-
fore report results for parameter estimates using Model II for each 
trait-based species group. For the distributions of all lianas and of all 
trees, we also fit and calculated AIC for Model III in order to assess 
potential influences of canopy gaps on their spatial structure. For all 
kernels, we scaled parameters to match a Gaussian kernel, for which 
spatial parameters represent the standard deviation of the distribution 
(see Appendix S1, A.2.I for details). Thus, roughly 68% of dispersal, self-
limitation and canopy gap interactions take place within distance cD, cK 
and cH of the focal individual, respectively. See Figure S1 in Appendix 
S1 for examples of how parameter values influence ̂V for each model.

2.7 | Sensitivity analyses

Because our methods rely on several assumptions, we also con-
ducted a series of sensitivity analyses. First, to test the reliability 
of our assumptions of moment closure and to test the reliability 
of long-distance interactions, we simulated spatial patterns with 

known dispersal and density-dependent characteristics that vio-
lated these assumptions, and then fit Model II to each pattern. 
These tests showed that fitting methods were robust to assumption 
violations, with the exception of the negative density dependence 
intensity index, П1, which increased with species abundance regard-
less of the true magnitude of density dependence. To ensure that 
this did not bias our results, we tested for differences in species 
abundance among trait-based groups, and repeated our analysis of 
the BCI data using a series of weighting methods that sequentially 
reduced the influence of rare species. Because species of different 
stature might be expected to have inherent differences in the spa-
tial scale of aggregation, we also repeated our analysis of the BCI 
data using a subset of tree species with similar maximum DBH, and 
tested whether the spatial distribution of large and small individuals 
of the ten most common species differed significantly from that of 
randomly chosen subsets of individuals. Lastly, because our spatial 
moment models assume that spatial structure is at equilibrium, we 
also tested for consistent signals of temporal change in V for each 
trait-based groups of species.

In general, these analyses showed that our fitting methods 
worked well across the range of parameters observed in our data, 
results were not qualitatively altered by differences in species 
abundances or size, and equilibrium assumptions were not vio-
lated. Detailed methods and results of these sensitivity analyses 
are described in Appendix S3. A small number of cases where the 
sensitivity analyses suggest potential biases in our main results are 
described in the discussion.

F IGURE  1 Differences in spatial structure among best-fitting groupings of species based on categorical traits. The wavelet variance (V) 
describes the degree of aggregation in a spatial process at each of multiple spatial scales, with V = 1 indicating random distributions at that scale, 
larger values indicating aggregation, and smaller values indicating segregation. Species groupings are those with the highest likelihood from 
nonparametric tests described in the main text (see Figure S4 for likelihoods of all tests). Shaded regions show mean ± SD for V for species 
within each trait-based group, with darker shading indicating overlapping distributions. Lines show model-based estimates ̂VII from fitting Model 
II, described in the main text. Figure insets show subsets of each graph on linear axes
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3  | RESULTS

3.1 | Lianas versus trees

Lianas were significantly more aggregated than trees across all spatial 
scales (Figure 1a). The fitted spatial moment model suggested that 
trees dispersed at significantly larger spatial scales, and experienced 
somewhat less intense negative density dependence than lianas 
(Figure 2a). However, the model fit for lianas was relatively poor at 
spatial scales above 20 m, and estimates for average competitive 
distance for lianas included very large uncertainty.

Using Model III to account for relationships with canopy gaps improved 
model fit for lianas (ΔAICIII-II = −2.4), especially at larger scales, though param-
eter estimates remained relatively unchanged (Figures 2a and 3). Including 
canopy gap information worsened model fit for trees (ΔAICIII–II = 5.1, with 
cH ≠ 0). Parameter estimates from Model III showed a significant increase in 
liana abundance within canopy gaps (ПH = 0.029 ± 0.012), and a significant 
decreased within canopy gaps for trees (ПH = −0.014 ± 0.005).

3.2 | Dispersal syndrome

Dispersal syndrome explained significant variation in aggregation 
among trees but not among lianas (Figures 1b,c and S4b,c). The best 
fitting grouping separated tree species into three categories: explo-
sive, wind and zoochoric dispersal, with no significant differences 
among the animal dispersal vectors. Explosively dispersed trees were 
significantly more aggregated at all scales than other tree species, 

zoochory showed intermediate aggregation, and wind-dispersed trees 
were significantly less aggregated than zoochoric trees at scales of 
roughly 5–65 m (Figure 1b inset). Based on the fitted spatial moment 
models, dispersal scale was smallest among explosively dispersed 
species, intermediate for wind-dispersed species, and largest for zoo-
choric species (Figure 2b). Conversely, negative density dependence 
was weakest among explosively dispersed species, intermediate for 
zoochoric species, and strongest for wind-dispersed species. Spatial 
scales of density-dependent interactions for zoochoric species were 
significantly larger than for wind-dispersed species, while estimates 
for explosively dispersed species included too much uncertainty to 
detect differences. For liana distributions, we found no significant dif-
ferences related to dispersal syndrome (Figures 2c and S4c).

3.3 | Tree canopy layer and stature

Among trees, shorter-statured species exhibited higher aggregation 
than taller species (Figure 1d). The best fitting trait-based group-
ing of canopy layers distinguished three categories: midcanopy and 
canopy trees combined as a single category, and understorey trees 
and shrubs as separate categories (Figures 1d and S4d). Canopy and 
midcanopy trees showed the least aggregation, understorey trees 
showed intermediate aggregation, and shrubs showed the most ag-
gregation. Shrub and understorey trees showed similar spatial scales 
for dispersal, while canopy/midcanopy trees had longer-distance dis-
persal (Figure 2d). Negative density dependence grew stronger for 
larger-statured trees, with canopy/midcanopy trees showing the most 

F IGURE  2 Parameters of spatial moment models (Model II) fitted to the best-fit categorical groupings of species from Figure 1. Parameters 
cD and cK describe, respectively, the spatial scale of dispersal and conspecific negative density effects. П1 describes the intensity of negative 
density dependence, with larger values indicating more intense negative density dependence. Number of species in each trait-based grouping 
is indicated by n. Intervals show mean ± SD, and 95% confidence interval. For lianas, coefficients for the ‘gap model’ are also shown, which 
includes spatial influences of canopy gaps on abundance (Model III). Other parameters for the gap model are shown in Figure 3
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intense negative density dependence, and shrubs the least. Spatial 
scale for density-dependent interactions was significantly larger for 
canopy trees than for understorey trees, while the estimate for shrubs 
included too much uncertainty to distinguish differences.

Maximum DBH was significantly related to spatial aggregation in 
trees (Figure S5a). Consistent with the findings for canopy layer for 
trees, aggregation decreased with maximum size (Figures 4a and S6a). 
By contrast, maximum DBH was not significantly related to spatial ag-
gregation in lianas (Figure S5b). Dispersal scale was significantly larger 
for trees with larger DBH, particularly for DBH >50 cm (Figure 5a). The 
spatial scale of competitive interactions increased with tree DBH as 
well, but the change was not significant (Figure 5a). The intensity of 
negative density dependence increased significantly with maximum 
DBH up to 100 cm, and then declined rapidly among the few larger 
tree species.

3.4 | Dispersal syndrome by tree stature

For analyses of interactions between dispersal syndrome and tree 
stature, we divided tree species into two stature groups: canopy/
midcanopy trees and shrubs/understorey trees. There were very few 
explosively dispersed canopy/midcanopy trees or wind-dispersed 
shrubs/understorey trees, and thus these were omitted from the 

analyses. Among canopy and midcanopy trees, we found no signifi-
cant differences in aggregation between wind-dispersed and animal-
dispersed species (Figure 1e), though the fitted models showed that 
wind-dispersed species exhibited larger-scale dispersal, and less in-
tense negative density dependence (Figure 2e). Among shrubs and un-
derstorey trees, explosively dispersed species had higher aggregation, 
shorter dispersal scale, and less intense negative density-dependence 
than animal-dispersed species (Figures 1f and 2f).

3.5 | Seed mass

Aggregation varied significantly with tree species seed mass (Figure 
S5c,d); however, differences were small and followed no obvious pat-
tern (Figures 4b and S6b). The spatial scales of dispersal and density 
dependence in the fitted models varied little, while the strength of 
negative density dependence declined strongly, particularly for seed 
mass above 1 g (Figure 5b). For liana species, we found no significant 
associations with seed mass (Figure S5d).

3.6 | Wood density and shade tolerance

For tree species, aggregation declined significantly with wood den-
sity and shade-tolerance (Figures 4c,d and S5e,g). For both traits, dif-
ferences were largest at scales below 10 m (Figure S6c,d). While the 
direction of associations between traits and aggregation appeared to 
reverse at spatial scales larger than 50 m, the differences were not 
significant. In lianas, spatial aggregation was not significantly related 
to wood density (Figure S5f), and we lacked sufficient data to test 
for relationships with shade tolerance. Tree wood density and shade 
tolerance were both significantly and positively correlated with spa-
tial scale of dispersal and density-dependent interactions, though the 
magnitude of change was small (Figure 5c,d). Intensity of negative 
density dependence declined significantly with wood density, espe-
cially above 0.5 g/cm3 (Figure 5c). There was a similar decline with 
shade tolerance, but the division was largely binary, with more intense 
negative density dependence among less shade-tolerant species 
(Figure 5d).

4  | DISCUSSION

Our results confirm that spatial structure of many woody plant spe-
cies on BCI can be explained in part by associations of functional traits 
with dispersal and negative density dependence. The spatial moment 
models that we present are useful approximations of the complex spa-
tial processes that influence species’ spatial patterns. Crucially, these 
models help separate influences of dispersal and density dependence 
and thereby provide greater insights into the mechanisms underlying 
spatial patterns. While the differences in how traits relate to patterns 
of aggregation across scales may be difficult to interpret directly, 
these differences often correspond to simple changes in spatial mo-
ment model parameters—the spatial scale of dispersal, and the spatial 
scale and intensity of density-dependence. Thus, results from spatial 

F IGURE  3 Fitted wavelet variances and parameter values of the 
model including covariance between species distribution and canopy 
gaps (Model III). Shaded regions show variability in V among tree 
and liana species as described in Figure 1a. Lines show fits from the 
spatial moment Model III that includes influences of canopy gaps on 
species abundance. Parameter cH describes the spatial scale of the 
effects of canopy gaps. Parameter ПH describes the strength and 
direction of canopy gap associations with abundance (‘gap affinity’), 
with positive values indicating increased abundance in canopy gaps, 
and negative values indicating reduced abundance. Intervals show 
mean ± SD, and 95% confidence interval. For lianas, other parameters 
for the gap model are shown in Figure 2 (for trees, there was no 
improvement in fit for Model III relative to Model II)
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moment models, as well as other process-based models (e.g. Hartig, 
Calabrese, Reineking, Wiegand, & Huth, 2011), are more easily inter-
pretable than differences in patterns of aggregation alone.

Our results provide new information on interspecific variation in the 
intensity and scale of negative density dependence. Unlike dispersal, 
which tended to be associated with monotonic changes in aggregation 
across scales, density dependence was generally related to the wavelet 

variance function V in complex ways. For example, smaller seed sizes 
were consistently associated with more intense negative density depen-
dence in all but our most conservative sensitivity analyses (Figures 5b, 
S9.4 and S10.4b). This result may be attributable to greater tolerance of 
larger seeds and seedlings for pests and competitors, which could fa-
cilitate establishment near other conspecific individuals (Lebrija-Trejos 
et al., 2016; Muller-Landau, 2010). Because species that experience 

F IGURE  4 Differences in spatial structure among tree species varying in continuous traits, illustrated here by comparing wavelet variance (V) 
for discrete groupings of each variable. The groupings are solely for the purpose of easier visualization; likelihood tests and model fitting were 
conducted in relation to continuous trait variation using the kernel smoothers described in the main text and in Appendix S2, B.1.I (see Figure S6 
for visual renderings of V as a continuous function across traits and scales). Only traits that explained significantly more spatial variability than 
the null model described in the main text are shown (see Figure S5 for likelihoods of all tests). Shaded regions show mean ± SD of V for species 
within each trait-based group, with darker shading indicating overlapping distributions. Lines show model-based estimates ̂VII from fitting 
Model II. Figure insets show subsets of each graph on linear axes
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similar intensities of negative density dependence, but vary in terms of 
the spatial scale of interactions, differ greatly in spatial pattern (Figure 
S1b), differences in tolerance might also explain the inconsistent rela-
tionship between seed mass and V. While it might seem that seed mass 
should be related to fecundity as well, fecundity in our model relates to 
the number of 1 cm sapling recruits per adult, which reflects the com-
bined influences of seed production, seedling establishment, growth and 
survival, which have varying (and largely compensatory) relationships 
with seed size on BCI (Dalling & Hubbell, 2002; Visser et al., 2016).

Similarly, in almost all analyses, larger trees (both in terms of can-
opy layer and stature) were associated with more intense negative 
density dependence that acted over larger spatial scales. This result 
held even when differences in dispersal scale were not significant (e.g. 
shrubs versus understorey trees). These results are consistent with 
the mechanisms hypothesized to underlie negative density depen-
dence, as both the abundance of natural enemies and the intensity 
of resource depletion would be expected to scale with crown size 
and rooting zone. Density dependence intensity was also predicted 
to decrease with wood density and shade-tolerance among tree spe-
cies, consistent with generalized life-history trade-offs between rapid 
growth strategies, and strategies that enhance competitive ability and 
tolerance (Kunstler et al., 2015; Wright et al., 2010), as well as specific 
hypotheses regarding physical defence against pathogens provided by 
denser wood (Augspurger & Kelly, 1984; Chave et al., 2009).

Our results indicating significantly less clustering at intermediate 
spatial scales for wind-dispersed tree species than for zoochoric spe-
cies is, to our knowledge, a novel finding on BCI. In the fitted spatial 
moment models, this finding is explained by weaker negative density 
dependence among zoochoric species. However, in sensitivity analy-
ses with less weight given to rare species, this difference was smaller, 
though generally still significant. Similarly, our results suggesting in-
creased dispersal scale among wind-dispersed, canopy and midcan-
opy trees relative to zoochory are not robust to sensitivity analyses 
with lower weights given to rare species (Figure S10.1 and S10.3). 
Potentially, these results suggest that our simple models omit import-
ant mechanisms (May et al., 2015). For example, an alternate expla-
nation for the differences in spatial patterns could be that zoochory 
is more effective at long-distance dispersal because of the ability of 
animal vectors to disperse seeds long distances, but also leads to fre-
quent short-distance dispersal as fruits fall around parent trees, driv-
ing aggregation at smaller scales.

An important caveat for our methods is that the ‘mechanistic’ pa-
rameters in our spatial moment models are fit to observed data using 
simple pattern-matching methods. Even though we gain power by 
testing relationships between model predictions and observations of 
V across multiple scales, the information provided by the second order 
statistics is often limited. A likely consequence is that our methods 
have low power to resolve influences of traits in cases where informa-
tion is available for only a small number of species and/or censuses. 
For example, there was high uncertainty in estimates for explosively 
dispersed species (of which there are relatively few) and lianas (for 
which we only had data from a single survey), and uncertainty in-
creased in sensitivity analyses where we reduced the weight of rare 

species or removed species from the analysis. In particular for lianas, 
it is unclear whether the lack of significant links to traits was a conse-
quence of small sample sizes, or a genuine difference in how liana and 
tree traits influence spatial structure. For some traits such as maximum 
DBH, which is less indicative of species strategies in lianas than trees, 
it is likely that the link with spatial signal is indeed weaker.

Despite these potential limitations, our fitting methods generally 
worked well across a wide range of parameter values, and neither dif-
ferences in species abundances and sizes, nor confounding effects of 
non-equilibrium dynamics appear to have biased our results (Appendix 
S3). Thus, where sufficient data are available, parameter estimates 
from our spatial moment models are likely to be reliable indicators of 
the scale and intensity of spatial interactions. Nevertheless, though 
our results appear to be well-supported for the groupings of species 
and the spatial and temporal scales that we consider, this will not nec-
essarily be the case for other species groups or scales. Others applying 
our methods should therefore utilize similar sensitivity analyses.

4.1 | Relation to previous studies

Our results generally accord with existing evidence about relationships 
between functional traits and spatial structure on BCI. Consistent with 
previous findings, our results show that most species are spatially ag-
gregated at most spatial scales (Condit, 2000; Hubbell, 1979). We also 
find that dispersal syndrome and stature appear to drive much of the 
difference in spatial pattern observed across tree species. This finding 
makes intuitive sense, and is broadly consistent with a non-significant 
trend in a previous study based on seed trap data (Muller-Landau et al., 
2008). Our finding that dispersal scales were lowest for explosively 
dispersed species, and lower for wind-dispersed trees than zoochoric 
trees, also matches results from other studies of species spatial struc-
ture on BCI (Seidler & Plotkin, 2006), the Guanacaste province of Costa 
Rica (Hubbell, 1979), and the Pasoh forest in Malaysia (Seidler & Plotkin, 
2006). Our quantitative estimates of dispersal scale also match previ-
ous results from seed trap studies on BCI, with mean dispersal distances 
of around 3 m for explosively dispersed species, and around 10 m for 
zoochory and wind dispersal (compare with Muller-Landau et al., 2008).

Our finding that lianas are substantially more aggregated than trees 
is also consistent with previous studies using other methods (Ledo & 
Schnitzer, 2014; Schnitzer et al., 2012). Our results suggest that this 
aggregation is largely due to short-range dispersal: Predicted dispersal 
scale for lianas (cD ≈ 3 m) was similar to that for explosively dispersed 
trees, which are among the most spatially aggregated tree species on 
BCI (Muller-Landau et al., 2008). Because our models make no distinc-
tion between clonal reproduction and seed dispersal, lower apparent 
dispersal for lianas may indicate greater vegetative reproduction rather 
than shorter-distance seed dispersal (Schnitzer et al., 2012). The posi-
tive associations between lianas and gaps in our models are also well-
supported by existing studies (reviewed by Schnitzer, 2015). Possible 
drivers of the liana-gap association include relatively higher liana seed 
arrival in gaps (Puerta-Piñero, Muller-Landau, Calderón, & Wright, 
2013), the ability of lianas to survive tree-falls (Dalling et al., 2012; 
Ledo & Schnitzer, 2014), and/or increased gap formation in sites where 
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lianas are common due to liana-induced tree mortality (Ingwell, Joseph 
Wright, Becklund, Hubbell, & Schnitzer, 2010; Putz, 1984). Because 
canopy gaps by definition have no large trees, but may still support 
large lianas along the ground, these results could be partially influenced 
by our definition of canopy gap. Interestingly, accounting for associa-
tions with canopy gaps did not change estimates of dispersal scale for 
lianas, suggesting that our predictions of short dispersal scales among 
lianas was not a by-product of this association. However, because there 
was only a single liana census, we could not test assumption that their 
spatial structure was at equilibrium. Our estimated model parameters 
for lianas should therefore be regarded with somewhat more scepti-
cism than those for tree species. Furthermore, the spatial resolution 
of our gap data was substantially lower than that for the tree and liana 
censuses, which reduces our method’s ability to distinguish small dif-
ferences in scale parameters, and may explain why we could not accu-
rately estimate the spatial scale of gap interactions (cH, Figure 3).

There are a number of directions in which our approaches and results 
could be extended to gain additional insights into spatial processes and 
patterns. Currently, we fit models using only the static spatial pattern 
information contained in individual species wavelet variance estimators 
V, treating all individuals of a particular species as identical, and ignoring 
spatial variation in the environment and in the abundances of other spe-
cies. Simultaneously utilizing dynamic data on recruitment and mortal-
ity, or information about variation in size among individuals and spatial 
variation in the abiotic and biotic environment could improve our ability 
to distinguish among competing hypotheses, and to test more complex 
mechanisms to explain species spatial patterns (Detto & Muller-Landau, 
2016; Getzin et al., 2014; May et al., 2015). For example, information 
about spatial variation in topography could reveal habitat effects on 
spatial structuring and thereby enable more complete controls for these 
effects in fits of models of dispersal and negative density-dependence 
(Bagchi et al., 2011; Condit, 2000; Detto et al., 2013). Similarly, utiliz-
ing dynamic data from across censuses would enable analysis of how 
recruitment and mortality events relate to local conspecific spatial and 
size structure, and thereby more directly separate influences of disper-
sal and negative density dependence (Bjørnstad, Ims, & Lambin, 1999; 
Detto & Muller-Landau, 2016). Lastly, jointly modelling multiple species 
and their interactions would enable investigation of quantitative differ-
ences in interaction effects (Comita et al., 2010; Ingwell et al., 2010; 
Kunstler et al., 2015; May et al., 2015), something that is outside the 
scope of our simplified models which incorporate heterospecific inter-
actions only implicitly using a non-spatial density dependence term (see 
Appendix S1, A.2.I in the supplement). All these potential expansions to 
integrate additional sources of information would require development 
of substantially more complex spatial moment models and associated 
methods for linking them to the relevant data.

5  | CONCLUSIONS

Our results show that plant functional traits can explain substantial in-
terspecific variation in spatial structure, and demonstrate that traits can 
be associated with quantitative parameters related to dispersal, negative 

density dependence and associations with canopy gaps. Our findings ac-
cord well with existing evidence and are robust across a wide range of 
sensitivity analyses. They suggest that simple trait measurements can pro-
vide insight about the processes that govern spatial distributions of large 
numbers of species, which could substantially simplify the process of scal-
ing up current theoretical and empirical understanding of spatial ecology.

Our results also demonstrate the importance of simultaneously 
considering associations of functional traits with both density depen-
dence and dispersal. For example, while species with shorter-range 
dispersal mechanisms likely compensate with traits that reduce the in-
tensity of negative density dependence (Harrison et al., 2013), it might 
be less clear that seed mass could correspond more strongly to density 
dependence than to dispersal (Lebrija-Trejos et al., 2016). Thus, while 
functional traits might correspond to characteristics of species that 
determine spatial structure, they are unlikely to be related through 
simple linear functions.

The methods that we present here serve as a template showing 
how to apply spatial moment models to evaluate the role of functional 
traits and environmental variability in determining the kinds of spa-
tial processes that influence species distributions (see Appendix S4 
for a worked example and source code). Spatial moment models have 
contributed to substantial theoretical advances in the past (Bolker & 
Pacala, 1999). However, only recently has it become practical to pa-
rameterize spatial moment models for real-world systems. As more 
empirical studies are able to incorporate these tools into their analy-
ses, we expect enormous progress in understanding how spatial struc-
ture influences ecological systems, which remains a grand challenge 
for ecology (Chesson, 2000; Levin, 1992; Simpson & Baker, 2015).
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