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This research compared the ability of Landsat ETM + , Quickbird and three

image classification methods for discriminating amongst coral reefs and

associated habitats in Pacific Panama. Landsat ETM + and Quickbird were

able to discriminate coarse and intermediate habitat classes, but this was sensitive

to classification method. Quickbird was significantly more accurate than Landsat

(14% to 17%). Contextual editing was found to improve the user’s accuracy of

important habitats. The integration of object-oriented classification with non-

spectral information in eCognition produced the most accurate results. This

method allowed sufficiently accurate maps to be produced from Landsat, which

was not possible using the maximum likelihood classifier. Object-oriented

classification was up to 24% more accurate than the maximum likelihood

classifier for Landsat and up to 17% more accurate for Quickbird. The research

indicates that classification methodology should be an important consideration

in coral reef remote sensing. An object-oriented approach to image classification

shows potential for improving coral reef resource inventory.

1. Introduction

Due to their importance in fisheries, tourism and global biodiversity it is necessary

to map and monitor coral reefs. These habitats are becoming increasingly threat-

ened areas by local pressures such as coastal development and over-fishing, and

global warming. Additionally, the majority of the world’s coral reefs are located

in the waters of developing countries, which do not often have adequate resources

to invest in traditional mapping techniques. Mapping via remote sensing using

aerial and satellite sensors has been shown to be more cost-effective than field-

work (Mumby et al. 1999) and satellite sensors also provide the opportunity for

routine monitoring. As coral reefs are located in relatively shallow, clear waters,

they can be detected using optical passive satellite sensors which were the focus of

this research.

Landsat TM and ETM + are the most commonly employed satellite sensors, but

their ability to discriminate between coral reefs and associated habitats is limited,
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mainly because of their spatial and spectral resolution. The size of Landsat image

pixels means that various habitats may be present in a pixel, causing classification

errors. The spectral differences amongst corals, seagrass and algae are also subtle

(Holden and LeDrew 1998, Hochberg and Atkinson 2000, Hedley and Mumby

2002, Hochberg et al. 2003, Karpouzli et al. 2004) and are not easily detected by

the sensor’s three broad bands which can penetrate the water column (blue, green

and red). Previous studies have found that Landsat sensors are adequate for

mapping at coarse descriptive resolution, e.g. coral, sand, seagrass, but they are

unable to discriminate more than seven different habitat classes (Mumby et al. 1997,

2004, Andréfouët et al. 2003, Call et al. 2003, Capolsini et al. 2003). Images

from high spatial resolution satellites such as IKONOS and Quickbird are now

available and IKONOS has been found to provide greater thematic map accuracies

(15–20%) than Landsat for low to intermediate numbers of habitat classes (Maeder

et al. 2002, Andréfouët et al. 2003) but it cannot be used reliably for mapping in

fine descriptive detail, i.e. 13 classes (Mumby and Edwards 2002). There has not

been any published work, to the authors’ knowledge, on the application of

Quickbird imagery for coral reef mapping. Previous studies using Landsat and

IKONOS have generally been conducted in the Caribbean and Indo-Pacific,

where the water is extremely clear and complex reef structures and associated

ecosystems are present. There is a need to expand the application of coral reef

remote sensing to other biogeographical regions that have different combinations of

marine habitats to examine the wider application of the sensors currently avail-

able. Furthermore, alternative methods for classifying remotely sensed images of

coral reef environments have received little attention, with the exception of

Andréfouët et al. (2000) and Mumby et al. (1998). Image classification is a crucial

stage in remote sensing image analysis, whereby spectral signatures representative

of the various habitat types are fed into a classifier that assigns every pixel in the

image to a habitat class. Coral reef mapping studies most commonly use the

maximum likelihood classifier (Mumby et al. 1997, Andréfouët et al. 2000, Maeder

et al. 2002, Mumby and Edwards 2002, Andréfouët et al. 2003, Capolsini et al. 2003)

because it offers more scope for accounting for the variation in classes by utiliz-

ing mean and variance/covariance data. However, improved results may be gained

by incorporating extra spatial information into the classification process, which

could help separate spectrally confused classes. Contextual editing involves applying

specific rules to the initial remote sensing classification and spatial ancillary

information. If sources of misclassification are known, then contextual editing can be

used after the classification has been conducted to improve accuracy. It is known

that certain marine habitats are constrained in their distribution by environmental

gradients (Malthus and Mumby 2003). Therefore, modifying the spectral classifica-

tion using knowledge of environmental limits of habitats could mitigate classifica-

tion errors (Malthus and Mumby 2003). Andréfouët et al. (2003) found that higher

accuracies were obtained when reefs were segmented into main geomorphologic

types and a similar procedure allowed Vierros (1997) to define more habitat classes

accurately in Bermuda. Contextual editing has been found to be useful in separating

coral from macroalgae (Mumby et al. 1997, 1998). However, such methods have not

been investigated sufficiently within coral reef mapping (Malthus and Mumby

2003). The majority of image classification techniques are based upon the ‘per-pixel’

approach. An alternative approach is segmentation, which involves merging pixels

together to create objects that are then classified in what is termed object-oriented

5048 S. Benfield et al.
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classification (Mittelberg 2002, Wang et al. 2004). The majority of applications of

this method have been in terrestrial studies, where higher classification accuracies

have been achieved (Mittelberg 2002, Herold et al. 2003, Ebert and Helmschrot

2004).

This research addressed the following questions: first, to what extent can marine

benthic habitats of this biogeographical region be discriminated using Landsat

ETM + and Quickbird data compared to previous studies in other regions; second,

does the higher resolution of Quickbird imagery provide any benefits to

classification accuracy?; and third, what benefits to classification accuracy can the

application of contextual editing and object-oriented classifiers provide over

standard pixel based classification techniques?

2. Study site

Las Perlas Archipelago lies between 8u409190 N, 79u039490 W and 8u119460 N,

78u469310 W within the Gulf of Panama (figure 1) and is composed of 250 basaltic

rock islands and islets, which are mostly uninhabited, are located within the 50 m

isobath and fall within the Tropical Eastern Pacific (TEP) biogeographic zone. Las

Perlas Archipelago experiences an upwelling period during the dry season (January–

April) that results in plankton blooms and high marine productivity. The upwelling

and associated primary productivity reduces light penetration through the water

column and horizontal visibility can be reduced to 1–2 m compared to the normal

6 m (Glynn and Maté 1996). The mean tidal range for the archipelago is 3.7 to 3.8 m

(Glynn and Maté 1996).

Historically it was believed that there were no coral reefs within the TEP due to

the cool continental currents and upwelling in the area prohibiting coral growth, but

studies within the last 30 years have found extensive reefs in the Gulf of Chiriquı́ and

in the Gulf of Panama (Glynn and Stewart 1973, Glynn 1976, 1977). The coral reefs

of this region are characterized by their small size (a few hectares), discontinuous

distribution and low species diversity (Cortés 1997). The largest aggregation of coral

reefs in the Gulf of Panama is found in Las Perlas Archipelago (Glynn and Maté

1996). The main reef building corals are branching species of Pocillopora but in

deeper areas there are also slower growing, massive Pavona coral species (Glynn and

Stewart 1973, Glynn, 1976, 1977). The other dominant sublittoral reef habitat is

formed by bedrock. The rocky substratum supports scleractinian, non-framebuild-

ing corals and soft corals, e.g. gorgonians. These habitats are referred to as ‘coral

communities’ in this study, differing primarily from coral reefs in the fact that they

do not form coral framework structures, where the base of the live reef is dead coral.

Other dominant marine habitats in the archipelago are sandy and muddy bottoms.

Macroalgae dominated areas are present but are not a common habitat and seagrass

beds are not found within the archipelago.

Most of the changes to the coral reefs in Southern Tropical America (STA) region

occurred during the 1980s (Garzón-Ferreira et al. 2004). This is in contrast to the

1997–1998 El Niño event, which had little effect on the reefs. Subsequent monitoring

by the STA countries indicates that little change in the reefs has occurred, with

Pacific reefs in Panama having coral cover between 2–54% and algal cover between

7–98%. Currently, the coral reefs and associated marine habitats of Las Perlas

Archipelgo are threatened by El Niño Southern Oscillation events, sedimentation,

pollution, overfishing, coastal development and tourism.

Mapping coral reefs in Pacific Panama 5049
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3. Methodology

3.1 Habitat definition and ground truth data collection

The fieldwork was conducted in four survey periods (August and October 2003,

April and May 2004) during the non-upwelling period. The entire coastline was

Figure 1. Map showing the location of Las Perlas Archipelago in relation to Central
America and distribution of manta tow survey points.

5050 S. Benfield et al.



D
ow

nl
oa

de
d 

B
y:

 [B
en

fie
ld

, S
. L

.] 
A

t: 
16

:3
5 

23
 O

ct
ob

er
 2

00
7 

surveyed by manta tow (figure 1) due to the patchy distribution of coral reefs and

coral communities, and the fact that the majority of coastline of southern islands

had never been surveyed (sensu Guzmán et al. 2004). As the reefs in the area are

relatively uniform compared to the Caribbean and Indo-Pacific reefs, it was

concluded that this technique would provide adequate detail. A snorkeller was

towed behind a small inflatable boat around the coast and, at approximately 100 m

intervals, the habitat type below the surveyor was noted and relayed to the data

recorder on the boat. Habitat type was recorded along with depth and the co-

ordinates measured using a handheld GPS with a position accuracy of ¡10 to 15 m.

The maximum depth surveyed by manta tow was 10 m due to visibility, which was

similar to the penetration of the visible wavelength bands of the sensors. If corals

were present, either forming a coral reef framework or as a coral community, an

estimate was made of the percentage live coral cover based upon previous

knowledge of reefs in the region (Guzman et al. 2004). The low, medium and high

coral cover categories were defined later based upon quadrat belt transects taken at

56 sites and the previous classification scheme used by Guzman et al. (2004). In total

2685 individual points were surveyed and the information was divided into training

data for image classification and sites for accuracy assessment.

Whilst the method of Mumby and Harborne (1999) is recognized by this study as

an objective way to derive a hierarchical habitat classification scheme it was not

employed here since a suitable classification scheme was already established for

Pacific Panama (Guzman et al. 2004). The hierarchical classification scheme used

followed the scheme of Guzman et al. (2004) and was composed of three descriptive

levels, coarse, intermediate and fine (table 1).

3.2 Image acquisition and pre-processing

We processed a Landsat ETM + image for 26 November 2000; the most recent

image available from the archive that was not troubled by high cloud cover or the

upwelling season. The Quickbird image was tasked for this project and was received

as a set of six separate files. Quickbird images were only obtained for the northerly

part of the archipelago due to the high costs involved. Further details relating to the

acquisition of the images are provided in table 2. All corrections and classifications

described in the following sections were performed in Erdas Imagine 8.6, except the

object-oriented approach.

Additional geometric correction was not performed on the images beyond that

performed by the image providers. The root mean squared error (RMSE) for

Landsat was 250 m and for Quickbird 14 m. Further geometric correction required

ground control points from either a pre-existing map or a GPS device in the field.

The topographic survey maps available were compiled in 1959 and did not provide

an accurate representation of the coastline. Therefore, the use of headlands and

other coastal features for geometric correction would have been pointless. In

addition, there was a lack of useable reference points, e.g. roads and buildings on the

islands that were visible in the Landsat image. The topographic map did not show

those that were present in the image, so these could not be used either for geometric

correction.

Before radiometric and water column corrections were performed the archipelago

area was extracted from the Landsat scene. Four bands were used from Landsat and

Quickbird: the blue, green and red bands were processed because they are the only

three able to penetrate of the water column and the near infrared (NIR) band was

Mapping coral reefs in Pacific Panama 5051
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used to mask out the land (table 2). Additional areas of cloud and cloud shadow

covering the water’s surface not excluded using this mask, were removed manually.

The blue, green and red bands were corrected to reflectance at the Earth’s surface

suing using values provided by the image suppliers (Irish 1998, Krause 2003) and

COST method (Chavez 1996). The COST removes atmospheric effects using dark

pixel subtraction (the value of a use of an image object with zero reflectance, e.g.

deep water, is subtracted from all pixels to remove effect of atmospheric scattering).

Depth correction was performed using the method of Lyzenga (1981), as utilized

and described by other authors (Mumby et al. 1997, 1998, Mumby and Edwards

2002, Andréfouët et al. 2003). Lyzenga (1981) showed that pixels of the same bottom

type, e.g. sand from various unknown depths, fall along a line when two log-

transformed visible bands, e.g. blue and green, are plotted against each other.

Repeating this for different bottom types results in a series of parallel lines and the

Table 1. Three-level hierarchical classification scheme developed for Las Perlas Archipelago
for classification of satellite images.

Coarse Label and
characteristics

Intermediate Label and
characteristics

Fine Label and
characteristics

1. Coral class 1.1 Live coral reef framework 1.1.1 Reef Low
Presence of live or
dead coral reef

Mainly branching
Pocillopora species with
some massive species

Live coral cover .40%
1.1.2 Reef Medium

Live coral cover 40–60%
1.1.3 Reef High

Live coral cover .60%

1.2 Dead coral reef
framework

1.2.1 Dead coral reef
framework

Live coral ,10% Live coral ,10%

2. Bedrock 2.1 Bedrock and boulders 2.1 Bedrock and boulders
Consolidated bedrock,
may be covered with
thin layer of sand,
sparse turf algae and/or
coral colonies

No or occasional coral
colonies

No or occasional coral
colonies

2.2 Coral community 2.2.1 Coral community Low
.5% hard/soft coral cover
on bedrock not forming
reef framework

Live coral cover ,20%
2.2.2 Coral community Medium

Live coral cover 20–40%
2.2.3 Coral community High

Live coral cover .40%
3. Algae dominated
Macroalgae .50%
Sargassum sp.

4. Sand dominated

5. Mud terringenous
origin

6. Unmappable
Water .10 m depth

7. Unclassified
Land, intertidal areas
and cloud

5052 S. Benfield et al.
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intercept of these lines gives a unitless depth invariant bottom index, where all pixels
of a certain bottom type have the same index value regardless of depth (Andréfouët

et al. 2003). We used this method to produce three depth-invariant bands for each

image from the blue, green and red bands, which were used in the image

classification.

3.3 Image classification

3.3.1 Maximum likelihood. The maximum likelihood classifier was chosen for this

study as it is the most commonly used classifier in coral reef studies to date. This

decision rule utilizes mean and covariance/variance data to assign pixels to a habitat

class based upon training data. To train the classifier, 107 sites were used for the

Landsat ETM + image, which were selected due to their homogeneity of composition
and the habitat diameter being greater than 50 m. Spectral signatures were generated

for the fine habitat classes using a seed pixel and the ‘region growing’ tool. The

signatures were used to produce the fine descriptive resolution thematic map, which

was then recoded, merging habitat types together using the hierarchical classification

system, to create maps of coarse and intermediate descriptive resolution.

The same procedure was followed for the Quickbird image, although signatures

were collected from the six subset images and each subset image was classified

separately due to the size of the image files. Training samples of all sites were
collected except for mud, as during the fieldwork no shallow (less than 10 m) mud

areas were found in the area sampled by the Quickbird image. In total, 207 sites were

used for training, which was more than used for the Landsat ETM + image due to

more samples being taken for the bedrock and sand classes as training sites had to

be collected for each subset image. The distance constraint for the ‘region-growing’

tool was reduced for the Quickbird image to 12 m, as using a 50 m constraint would

have included too many pixels in the signatures. The resulting fine descriptive

resolution thematic maps for each subset image were mosaiced together and then
habitats were merged using the hierarchical classification system, to create maps of

intermediate and coarse descriptive resolution.

3.3.2 Contextual editing. Contextual editing classification involved applying

specific rules to the maximum likelihood classification and spatial ancillary
information based upon known sources of misclassification. The results of the

maximum likelihood classifications showed that there was confusion between

Table 2. Image parameters for Landsat ETM + and Quickbird.

Landsat ETM + Quickbird

Date of acquisition 23 November 2000 24 December 2004
Time of acquisition 16:30 GMT (10:30 local) 15:54 GMT (9:54 local)
Path, Row 11, 054 n/a
Nadir/Off-Nadir Nadir Off-nadir 1.8u
Processing level 1G 2A
Resampling method Cubic convolution Cubic convolution
File format GeoTIFF GeoTIFF
Sun elevation 52.0u 52.3u
Sun azimuth 140.4u 148.3u
Spatial resolution 30 m 0.6 m (Pan-sharpened)
Spectral bands used for
classification (mm)

Blue: 0.45–0.52, green:
0.52–60, red: 0.63–69

Blue: 0.45–0.52, green: 0.52–0.60,
red: 0.63–0.69,

Mapping coral reefs in Pacific Panama 5053
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certain classes. In particular, confusion existed between several classes and this

drove the choice of ancillary information to be used in the contextual editing

classification. In the Las Perlas Archipelago it was known from previous studies

(Glynn and Stewart 1973, Glynn and Maté 1996) and from fieldwork, that habitats,

in particular coral reef frameworks, are constrained in the locations where they can

exist due to environmental factors. The environmental variables used in contextual

editing were depth, wave exposure, distance to land, distance to mangrove, distance

to river mouths and distance to known sites of live and dead coral reef framework,

coral community and algae. The different shapefiles and raster layers required were

created using ArcGIS. The distance to known sites of coral reef framework (low,

medium and high cover), coral community (low, medium and high cover), dead

coral reef framework and algae were calculated. These data were used as a final

option for separating classes that were spectrally confused in the maximum

likelihood classification. The rules used are described in table 3, where the upper

constraint values were obtained from the ancillary raster layers, field data and

previous publications (Glynn and Stewart 1973, Glynn and Maté 1996). The

Knowledge Engineer of Erdas Imagine was used to perform contextual editing of

the maximum likelihood images. Where the maximum likelihood classifica-

tion indicated that a pixel was, for example, coral class but ancillary data suggested

that the location was unsuitable, then the pixel was recoded as another habitat

type, e.g. bedrock. The first round of contextual editing (contextual editing 1)

used only depth, exposure, distance to land, distance to mangrove and distance to

river mouths. The second round (contextual editing 2) used the aforementioned

data layers with the distance files for the habitat types. The last round of contextual

editing (contextual editing 3) added a distance constraint, whereby if a pixel was

within 30 m (Landsat ETM + ) or 2.4 m (Quickbird) of a known habitat site then the

pixel was classified as that habitat. This was to ensure that where sites were known

to be a form of coral class, coral community or algae, they were classified as such.

3.3.3 Object-oriented classification. An alternative approach to pixel-based

classification is object-oriented classification and this form of classification was

performed using the software eCognition. Object-oriented classification is composed

of two steps, segmentation and classification (Wang et al. 2004). The segmentation

stage creates the image objects and these image objects are then used as the building

blocks for further classification (Mittelberg 2002), which is based on fuzzy logic.

Objects were produced using multi-resolution segmentation, where in each step,

pairs of neighbouring image objects are merged which result in the smallest growth

of heterogeneity. If this growth exceeds a threshold defined by a break-off value

(scale parameter), the process stops. By varying the scale parameter, it is possible to

create image objects of different sizes. Weighting values are defined by the user to

control the mixing of colour and shape and the importance of smoothness versus

compactness (Baatz et al. 2004).

The Landsat ETM + image and the Quickbird images were segmented at two

levels. Level 2, with large image objects, was used to define deep water areas and

sand dominated expanses. This was classified and used in conjunction with level 1

(smaller objects) to delineate the other habitat classes. Depth-invariant bands were

weighted equally and trial and error was used to find a suitable scale parameter. The

scale parameter was 42 and 78 for level 1 and 2 respectively for Landsat. The scale

parameters for Quickbird were increased to 450 and 1000 for level 1 and 2, because

of the higher spatial resolution. Colour was weighted at 0.8 and shape at 0.2 for

5054 S. Benfield et al.
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Table 3. Environmental constraints imposed during contextual editing.

Rules to apply to ancillary data layers

Depth Exposure
Distance
to land

Distance to
mangrove

Distance to
river mouths
(river has at

least two
tributaries)

Distance to
known sites

Live coral
reef frame-
work/dead
coral reef
framework

(7m (1.4.
Only
found
in or
at the
edges
of
sheltered
bays

(400 m
Coral reefs
are found in
sheltered
bays and
therefore
are associated
with land

>400 m.
Areas in
close
proximity to
mangroves
experience
high
sedimenta-
tion
preventing
reef
development

>400 m.
These areas
are areas
of high
sedimentation,
which
are
unsuitable
for coral
reef growth

(400 m.
The major-
ity of the
coastline
was
surveyed
and so it
was
assumed
that there
would not
be any coral
reefs a large
distance
away from
those
surveyed

Bedrock &
boulders

(1000 m.
Bedrock is
associated
with the
coastline.
This constraint
value was still
large enough
that submerged
areas of
bedrock further
from the coast
would be
classified
as bedrock

>120 m.
Mud was
misclassified
as bedrock.
As it was
more likely
that areas
very close to
mangrove
would be
mud this
constraint
was applied

Coral
community

(400 m.
Coral
communities
are associated
with rocky
areas of
coastline and
only occur
away from
the coast on
submerged
areas of rock

>400 m.
Corals are
sensitive to
areas of
high
sedimenta-
tion

>400 m.
These are
areas of
high
sedimentation,
which are
unsuitable
for coral
reef growth

(400 m.
The
majority of
the coastline
was
surveyed so
it was
assumed
that there
would not
be any
coral
communi-
ties a large
distance
away from
those
surveyed

Mapping coral reefs in Pacific Panama 5055
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images from both sensors. As compact areas of coral reef in the images were

surrounded by sand, compactness was weighted higher than smoothness (0.6 and

0.4). The ancillary data layers were imported and the class hierarchy was created

using two levels. The class hierarchy is the knowledge base in eCognition and

contains all the classes of interest. Within this ‘Inheritance’ determines how rules are

passed from parent classes, e.g. live coral reef framework, to subclasses, e.g. reef

medium.

For classifying level 2 (deep water and sand dominated), the nearest neighbour

classifier was used to define the properties of these two classes based upon the mean

depth-invariant values. The mappable parent class in level 1 was used to identify

areas that were suitable for classification, i.e. they were not in an area of deep water

defined by either the level 2 classification or where depth was greater than 10 m

(maximum penetration of the visible bands of the sensors). Areas not fitting these

criteria were classified as unmappable. All other classes (except mappable and

unmappable) were defined by a six-dimensional (6D) feature space using the nearest

neighbour classifier that was composed of the mean value of the three depth-

invariant bands and their mean standard deviation. The one-dimensional (1D) rules

used for the additional spatial data were the same as for contextual editing, but were

Rules to apply to ancillary data layers

Depth Exposure
Distance
to land

Distance to
mangrove

Distance to
river mouths
(river has at

least two
tributaries)

Distance to
known sites

Algae (600 m.
Macroalgae are
associated with
shallow water
around the coast
to obtain enough
light to
photosynthesize
during the
upwelling
periods

(400 m.
The major-
ity of the
coastline
was
surveyed
so it was
assumed
that there
would not
be any algae
dominated
areas a large
distance
away from
those
surveyed

Sand
dominated

If sites labelled as other habitats do not fill the environmental constraints, they
were reclassified as sand

Mud (1.7 as
areas are
generally
sheltered

(200 m.
Mud in
shallow areas
is always
associated
with
mangrove

Table 3. Continued

5056 S. Benfield et al.
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described and combined using membership functions and logical operators. The

expressions and membership functions used are described for each habitat class in

table 4.

Table 4. The membership functions used in eCognition. AND (min)/OR (max) refers to the
logical operator used to combine expressions. ‘Inherited’, expressions inherited from higher

hierarchical classes; and ‘dist’, distance.

Mapping coral reefs in Pacific Panama 5057
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Three classifications were performed for level 1 for each image with different levels

of information. The first classification (eCognition 1) was performed only with the

nearest neighbour information. The second classification (eCognition 2) used all

ancillary information except for the distance to known sites and the final classification

(eCognition 3) used all information plus the expressions for distance to known sites

(table 4). This was done to examine the difference in results obtained when adding

ancillary data and to provide a comparison to the contextual editing approach. To

achieve a hard classification a minimum membership value was defined (0.1).

3.4 Accuracy assessment

The manta tow data were used to assess the accuracy of both images, with 1304 sites

being used to test the thematic maps produced from Landsat and 411 for Quickbird.

Congalton (1991) suggests a minimum of 50 sample sites for each habitat class.

However, for the fine descriptive resolution classes reef low, reef medium, dead coral

framework, coral community high and algae, less than 50 sites were obtained. This was

in spite of surveying the entire coastline and was due to a low dominance of these

habitats in the field. Subsequently, this means that the accuracy results obtained for

these classes should be treated with caution. For all other habitat classes the accuracies

reported can be considered reliable because adequate sample sites were used (over 100),

which were independent of the training data and were spread throughout the

archipelago. Different measures were used to compare the methods (sensu Mumby et

al. 1997). Overall accuracy was used as it represents the overall degree of agreement

between the image and the reference data. The user’s accuracy was calculated, as it is

useful for assessing the accuracy of classification for the various habitat classes

(Congalton 1991, Mumby et al. 1997). The user’s accuracy was used to compare the

results from the two satellites for the habitats that they had in common. Z-tests were

performed to test for significant differences between the accuracy of the classification

methods for both sensors (Ma and Redmond 1995, Green et al. 2000). Green et al.

(2000) suggest that 60 to 80% is the recommended accuracy for creating an inventory of

resources for management. The final applications of the thematic maps produced from

this study were resource inventory. Therefore, a threshold of 70% was used to define

the minimum overall accuracy and user’s accuracy that a map had to achieve to be

considered useful for these purposes.

4. Results

The overall accuracy and user’s accuracy results discussed in the following sections

are presented in table 5.

4.1 Comparison of methods

4.1.1 Landsat ETM + . All methods displayed a decrease in overall accuracy as

descriptive resolution increased (figure 2). Based upon overall accuracy, the thematic

maps produced using the maximum likelihood classifiers were not accurate enough

to be used in resource inventory. Contextual editing methods provided an increase

in overall accuracy for the majority of cases compared to the maximum likelihood

classifier (figure 2). This increase in accuracy was significant for all contextual

editing variants at the coarse descriptive resolution, but only significant for

contextual editing 3 for the intermediate and fine thematic maps (table 6). The

highest result using contextual editing was produced using contextual editing 3.

5058 S. Benfield et al.
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Table 5. The overall accuracy (bold) and user’s accuracy for each class in the coarse, intermediate and fine descriptive levels for Landsat ETM + and
Quickbird. ML, maximum likelihood; C1/2/3, contextual editing 1/2/3; and E1/2/3, eCognition 1/2/3.

Landsat ETM +
Overall Accuracy %

Quickbird
Overall Accuracy %

User’s accuracy % User’s Accuracy %

Level and habitat classes ML C1 C2 C3 E1 E2 E3 ML C1 C2 C3 E1 E2 E3

Coarse 57.1 65.7 66.3 71.2 67.6 78.6 81.4 76.9 74.7 74.9 76.4 87.8 88.6 89.5
Bedrock 80.3 84.4 84.5 89.6 87.6 96.1 96.4 85.2 73.5 73.7 75.3 93.3 92.5 94.1
Coral class 40.0 77.8 98.2 97.3 35.8 70.8 93.5 75.5 89.1 90.1 90.7 90.2 94.0 94.1
Algae 90.9 90.9 100.0 100.0 37.9 33.3 100.0 75.0 55.6 100.0 100.0 66.7 87.5 87.5
Sand dominated 48.3 41.8 41.3 43.8 69.5 63.4 61.0 70.3 68.0 65.9 66.9 80.0 78.8 78.8
Mud 36.4 81.6 81.6 81.6 70.5 74.4 72.7 n/a n/a n/a n/a n/a n/a n/a

Intermediate 51.4 53.5 55.4 67.2 62.8 72.9 76.3 72.3 65.5 67.6 69.1 84.9 85.6 87.4
Bedrock and boulders 63.0 58.5 57.9 69.2 61.4 69.2 71.3 75.8 64.2 65.7 67.7 87.4 87.4 86.9
Coral community 61.9 61.6 71.0 83.6 69.1 77.0 86.6 62.8 35.0 42.0 42.0 82.6 80.4 95.0
Branching coral reef 38.5 76.4 96.4 94.6 45.0 80.0 92.2 75.8 88.8 89.8 90.4 90.4 93.5 93.8
Dead coral 41.7 50.0 66.7 90.9 35.3 66.7 85.7 71.4 100.0 100.0 100.0 77.8 87.5 100.0
Algae 100.0 100.0 100.0 100.0 45.0 52.4 100.0 75.0 55.6 100.0 100.0 66.7 87.5 87.5
Sand dominated 48.9 39.6 40.8 46.2 70.7 70.6 69.3 70.3 65.4 63.4 64.4 80.9 78.8 78.8
Mud 40.6 82.9 82.9 83.6 79.5 79.6 78.1 n/a n/a n/a n/a n/a n/a n/a

Fine 44.8 47.6 48.5 64.3 59.1 62.9 68.7 59.1 60.8 62.5 62.5 80.5 81.5 83.5
Bedrock and boulders 63.2 52.4 44.2 57.6 61.9 68.3 65.9 68.2 58.8 57.4 58.4 87.4 87.4 86.9
Dead coral 45.0 50.0 60.0 91.3 60.0 75.0 85.7 71.4 66.7 100.0 100.0 77.8 87.5 100.0
Algae 76.9 100.0 100.0 100.0 57.1 52.4 100.0 75.0 57.1 80.0 80.0 66.7 87.5 87.5
Sand dominated 50.4 40.6 40.2 46.9 70.2 70.4 69.0 65.3 64.4 63.7 64.7 79.3 79.7 78.8
Mud 40.9 82.9 82.9 83.6 77.7 78.6 77.2 n/a n/a n/a n/a n/a n/a n/a
Coral community low 43.6 52.5 70.5 86.3 51.9 58.0 73.0 39.1 27.8 50.0 54.6 94.7 100.0 100.0
Coral community medium 29.4 29.2 48.7 78.4 31.7 36.5 51.3 50.0 0.0 0.0 0.0 56.5 54.2 77.8
Coral community high 15.3 14.6 60.0 75.0 20.3 19.2 45.5 30.0 33.3 66.7 66.7 100.0 100.0 100.0
Reef low 25.0 20.0 66.7 93.3 33.3 43.8 61.5 28.6 0.0 0.0 12.5 66.7 72.7 80.0
Reef medium 13.3 30.8 50.0 67.7 27.7 48.1 66.7 28.6 30.8 30.8 25.0 45.8 45.8 51.9
Reef high 35.7 62.8 81.8 96.2 39.5 64.9 81.9 65.7 79.5 80.6 79.7 89.7 93.2 93.3
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However, there was no significant difference between contextual editing 1 and 2, but

there was between contextual editing 1 and 3 and contextual editing 2 and 3

(table 6). However, none of the contextual editing variations produced an overall

accuracy greater than the 70% threshold. Despite this, contextual editing did

produce improvements in the user’s accuracy of coral reef framework (dead, low,

medium and high), coral community, algae and mud classes (table 5).

Overall, the eCognition results were the most accurate of all the methods tried.

eCognition methods generally provided a significant improvement in accuracy for

all descriptive resolutions compared to the maximum likelihood classifier and

contextual editing (table 6, figure 2). The exceptions to this were between contextual

editing and eCognition 1 for coarse descriptive resolution, and contextual editing 3

and eCognition 2 and 3 for the fine thematic maps (table 6). The overall accuracy of

the image produced from eCognition 3 for the coarse thematic maps was 24.3, 15.1

and 10.2% greater than maximum likelihood, contextual editing 2 and 3 respectively.

Similar results were obtained from the intermediate thematic maps (24.9, 20.9 and

Figure 2. A comparison of the overall accuracy of the thematic maps obtained from the
Landsat ETM + image and Quickbird image for the three levels of descriptive resolution.
ML5maximum likelihood classifier, C15contextual editing 1, C25contextual editing 2,
C35contextual editing 3, E15eCognition 1, E25eCognition 2 and E35eCognition3.

5060 S. Benfield et al.
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Table 6. Z-tests for the thematic maps produced from the Landsat ETM + and Quickbird
images. Values in bold indicate a rejection of the null hypothesis (Z0.0551.96) of equality of
accuracies. A positive value indicates that the methodology on the horizontal row of the table
is more accurate than that listed on the left hand side. A negative value indicates the opposite.

Landsat
ETM +

Classification method

C1 C2 C3 E1 E2 E3

Coarse
ML 3.44 3.51 6.93 5.21 11.66 13.34
C1 0.07 3.41 1.72 8.02 9.65
C2 3.34 1.65 7.93 9.56
C3 21.70 4.59 6.21
E1 6.31 7.94
E2 1.61
Intermediate
ML 0.43 1.19 8.06 5.70 11.38 13.36
C1 0.76 7.57 5.23 10.85 12.81
C2 6.78 4.45 10.04 11.98
C3 22.32 3.21 5.11
E1 5.54 7.45
E2 1.89
Fine
ML 0.26 0.12 9.54 6.98 8.68 11.52
C1 20.13 9.15 6.64 8.31 11.10
C2 9.23 6.73 8.39 11.17
C3 22.49 20.82 1.92
E1 1.67 4.42
E2 2.74

Quickbird

Classification method

C1 C2 C3 E1 E2 E3

Coarse
ML 21.68 21.59 20.63 7.93 8.47 9.40
C1 0.09 1.05 9.61 10.14 11.07
C2 0.96 9.51 10.05 10.98
C3 8.55 9.08 10.01
E1 0.54 1.48
E2 0.94
Intermediate
ML 23.68 22.66 21.84 8.52 9.02 10.36
C1 1.01 1.83 12.29 12.80 14.16
C2 0.81 11.23 11.73 13.08
C3 10.39 10.89 12.24
E1 0.50 1.84
E2 1.34
Fine
ML 0.13 0.65 0.78 12.75 13.31 14.73
C1 0.52 0.66 12.52 13.08 14.48
C2 0.13 11.93 12.49 13.88
C3 11.81 12.51 13.76
E1 0.55 1.92
E2 1.37

Mapping coral reefs in Pacific Panama 5061
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9.1%) and fine (23.9, 20.2 and 4.4%) when compared to maximum likelihood,

contextual editing 2 and 3. However, notably, there was no significant difference

between eCognition 2 and 3 (table 6).

4.1.2 Quickbird. The overall accuracy of the thematic maps decreased as the

descriptive resolution increased for all methods tried, as found for Landsat ETM +
(figure 2). However, unlike Landsat ETM + , the maximum likelihood classifier

produced coarse and intermediate thematic maps with overall accuracies greater

than 70%. Nevertheless, the fine thematic map only had an overall accuracy of

59.1% and hence could not be relied upon for resource inventory. Contextual editing

was found to improve the user’s accuracy of coral class, live coral reef framework

and dead coral classes (table 5). However, the overall accuracy for all intermediate

and fine thematic maps produced using contextual editing was below the threshold

for use in resource mapping (figure 2, table 5). For the coarse and intermediate

descriptive resolution maps the accuracy for all contextual editing methods was not

significantly greater than the maximum likelihood thematic maps (figure 2, table 6).

For the intermediate descriptive resolution maps, the maximum likelihood classifier

was significantly more accurate than contextual editing 1 and 2 (table 6).

The results from eCognition methods were the most accurate, providing increases in

overall accuracy for all descriptive resolutions compared to the maximum likelihood

method and contextual editing (figure 2, table 6). Figure 3 shows a comparison of the

classified maps produced from the maximum likelihood classifier and eCognition 2 for

intermediate descriptive resolution. It can be seen that live coral reef framework, coral

communities and coastal areas of bedrock are better defined in the map produced using

eCognition. The overall accuracy of all maps produced was higher than the accuracy

threshold set, although for the fine thematic maps, the user’s accuracies of some

classes, e.g. coral community medium and reef medium, were lower than 70%.

eCognition 3 produced the most accurate result for all descriptive resolutions based

upon overall accuracy. The overall accuracy of the image produced from eCognition 3

for the coarse thematic maps was 12.6, 14.6 and 13.1% greater than maximum

likelihood, contextual editing 2 and 3 respectively. Similar results were obtained for

intermediate (15.1, 19.8 and 18.3%) and fine (24.4, 21.0 and 21.0%) thematic maps,

when compared to maximum likelihood, contextual editing 2 and 3. However, for all

descriptive resolutions there were no significant differences between the eCognition

methods (table 6). However, the ancillary information did provide an increase in

overall accuracy, an improvement in the visual appearance of the final maps, and an

enhancement in user’s accuracy for classes such as live and dead coral reef framework,

algae, reef low, medium and high (table 5).

4.2 Comparison of sensors

Calculations were performed to calculate the mean difference in overall accuracy

between Landsat and Quickbird (Quickbird minus Landsat) over all methods tried.

The overall accuracy of the Quickbird image was found to be significantly higher for

all methods and at all descriptive resolutions than the Landsat image (table 7). When

contextual methods were excluded from the calculation, the difference between the

images increased to 14.5%¡6.4 SD, 16.7%¡5.6 SD and 17.3 %¡3.5SD for coarse,

intermediate and fine descriptive resolutions respectively.

The user’s accuracies of the various habitat classes were compared between the

two sensors. The user’s accuracy of intermediate habitats in thematic maps

5062 S. Benfield et al.
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produced from Quickbird, across all methods, were significantly greater than those

produced from Landsat (mean difference 9.6%¡21.4 SD, T522.42, p50.018,

df579). The user’s accuracy for fine habitat maps was also greater in the Quickbird

image (mean difference 9.8%¡28.2 SD, T522.34, p50.021, df5134). However, for

the coarse thematic maps there was no significant difference between the sensors

(mean difference 8.5%¡21.0 SD, T521.69, p50.099, df539). Nevertheless, when

the calculations were conducted excluding the contextual editing results there was a

significant difference between the two images (mean difference 14.9%¡21.0 SD,

T522.32, p50.032, df519). The mean difference in user’s accuracy between the two

sensors also increased for intermediate and fine thematic maps when the contextual

Figure 3. A comparison of the intermediate descriptive resolution maps produced from
Quickbird classified with the maximum likelihood classifier (a) and eCognition 2 which
includes ancillary information (b). Improvements in the delineation of branching coral reef
framework habitats, coral community and bedrock classes can bee seen when eCognition was
used. A reduction in habitat confusion along the deepwater boundary around the islands is
also apparent. Available in colour online.

Table 7. Difference in overall accuracy between Landsat and Quickbird thematic maps and
results of t-tests. All results were significant at p50.05.

Descriptive
resolution

Difference in overall
accuracy (%)

Standard
deviation t-test results

Coarse 11.56 5.95 T522.83, p50.015, df512
Intermediate 13.27 6.75 T522.57, p50.024, df512
Fine 13.50 7.36 T522.45, p50.031, df512

Mapping coral reefs in Pacific Panama 5063
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editing methods were excluded (15.5%¡16.2 SD and 21.5¡20.4 SD, for the

intermediate and fine thematic maps respectively).

5. Discussion

5.1 To what extent can marine benthic habitats of Las Perlas Archipelago be
discriminated using Landsat ETM + and Quickbird data?

It was hypothesized that Landsat would produce similar accuracy results to

previously published work but it was found that Landsat could not be used to map

any level of descriptive resolution attempted to a suitable degree of accuracy (70%)

using the maximum likelihood classifier. The results support Guzman et al. (2004),

who encountered similar problems using Landsat ETM + to discriminate between

coral reefs and coral communities in the Gulf of Chiriquı́, Panama. The results

obtained here were generally lower than other studies, which have achieved overall

accuracies of 63 to 84% for mapping four to five habitat classes (Mumby et al. 1997,

Mumby and Edwards 2002, Andréfouët et al. 2003, Call et al. 2003, Capolsini et al.

2003). Landsat ETM + was only suitable for mapping five to seven classes when

object-oriented classification was used in conjunction with ancillary data. The

accuracy achieved for five habitat classes using these methods (68 to 81%) was

similar to the studies previously mentioned. However, for seven classes, the overall

accuracy using eCognition was higher than the accuracies reported by Mumby et al.

(1997) and Andréfouët et al. (2003), although similar to the results achieved using

SPOT HRV (Andréfouët et al. 2000). Landsat ETM + performed poorly at higher

descriptive resolutions (11 classes), irrespective of the classification method used.

Hence, it can be concluded that Landsat ETM + in this region can discriminate

amongst coral reefs and associated sublittoral habitats at coarse and intermediate

descriptive resolutions, as in previously published work, but this was sensitive to the

classification method used.

Quickbird was able to map four to six habitat classes sufficiently using the

maximum likelihood classifier. Comparisons were made to IKONOS as no

published data could be found on applications of Quickbird for coral reef mapping.

The results of the maximum likelihood classifier were lower than Maeder et al.

(2002) and Mumby and Edwards (2002), but were in a similar range to Andréfouët

et al. (2003), Capolsini et al. (2003) and Riegl and Purkis (2005) for four to eight

habitat classes. However, using eCognition the resulting thematic maps had similar

(Maeder et al. 2002) or higher overall accuracies for a respective number of habitats

compared to other work (Mumby and Edwards 2002, Andréfouët et al. 2003,

Capolsini et al. 2003, Riegl and Purkis 2005). eCognition provided a 5 to 15%

increase in overall accuracy when used with Quickbird compared to the results from

IKONOS published by Mumby and Edwards (2002). This research using Quickbird,

in combination with the previously mentioned IKONOS studies, suggests that high-

resolution optical sensors can discriminate up to eight habitat classes to an accuracy

suitable for resource inventory.

5.2 Does the higher resolution of Quickbird provide any benefits to classification
accuracy?

Quickbird was significantly more accurate than Landsat ETM + for all descriptive

resolutions in this area. The thematic maps were on average 14.5 to 17% higher in

overall accuracy than Landsat ETM + , which is comparable to the 15 to 20%

5064 S. Benfield et al.
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difference between IKONOS and Landsat ETM + observed by Andréfouët et al.

(2003). However, these results are in contrast to Mumby and Edwards (2002) and

Capolsini et al. (2003) who found that IKONOS and Landsat sensors were similar in

overall accuracy for mapping three to eight habitat classes. Despite Quickbird

producing higher accuracies in comparison to Landsat, both sensors confused the

same combinations of habitat classes. This is probably due to both sensors having

similar spectral resolution, which limits their discrimination ability, as suggested by

Mumby and Edwards (2002). However, the degree of confusion differed: Landsat

ETM + using the maximum likelihood classifier only adequately mapped bedrock/
bedrock and boulders, algae and coral community, whereas Quickbird managed to

map all coarse and intermediate habitat classes well. In particular, bedrock and

boulders, coral communities, live/dead coral reef frameworks, and sand dominated

classes were all mapped more accurately than by Landsat ETM + . This is in contrast

to Capolsini et al. (2003) who found that the user’s accuracy of coral mapped using

IKONOS was very low. Capolsini et al. (2003) pointed out that the greater accuracy

of IKONOS over Landsat in their study was biased by its ability to classify sand

pixels better. However, this research showed that not all the improvements in overall
accuracy were purely due to Quickbird’s greater ability to discriminate sand, but

also due to improvements in other classes, e.g. live coral reef framework. The

improvements in accuracy of Quickbird over Landsat may be due to its higher

spatial and radiometric resolution, which allow it to detect the patchy reefs in the

archipelago more easily than Landsat.

5.3 Applications and cost-effectiveness

Whilst Quickbird can provide higher accuracies, it is not cost-effective for large-

scale resource mapping at coarse and intermediate descriptive resolutions, as has

been concluded for IKONOS (Mumby and Edwards 2002), and Landsat is more

cost-effective (Mumby et al. 1999, Mumby and Edwards 2002). However, in Las

Perlas Archipelago, Landsat ETM + was found to be of little use in terms of

accuracy when classified with the maximum likelihood classifier. These findings are

of importance, given the acquisition of large numbers of Landsat images for baseline
coral reef mapping. This research has also highlighted the problem of previously

focusing coral reef remote sensing studies in a few geographical areas. Only by

extending studies to other geographic areas can we more fully appreciate the

capabilities of sensors for mapping and monitoring.

Small-scale habitat monitoring and qualitative change detection have been

suggested as potential applications of IKONOS (Mumby and Edwards 2002).

Whilst this research primarily set out to assess the ability of the two sensors for

mapping marine habitats, the results using eCognition with ancillary information
and Quickbird are of an overall and user’s accuracy approaching that suitable for

detecting losses and changes in habitats over time (90% as suggested by Green et al.

2000). Bedrock, coral community, branching coral reef and sand classes could all be

discriminated with good accuracy. Areas of coral reef growth were detected when

the Quickbird results were compared to coral reef maps produced from aerial

photography by Glynn and Stewart (1973). Therefore, the growth and loss of live

coral reef framework in this region could be detected using this sensor and

classification method. In previous studies high spatial resolution sensors do appear
to have shown potential for detecting change between coral dominated areas and

bare substrate (Palandro et al. 2003, Elvidge et al. 2004), although algae and coral

Mapping coral reefs in Pacific Panama 5065
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are often difficult to discriminate, causing problems for change detection (Mumby

and Edwards 2002, Andréfouët et al. 2003, Hochberg et al. 2003).

5.4 What benefits to classification accuracy can the application of contextual editing
and object-oriented classifiers provide over standard pixel based classification
techniques?

It was expected that the contextual and eCognition methods would produce a

significant improvement in accuracy over the maximum likelihood classifier because

they incorporated both spectral and non-spectral information to reduce misclassi-

fication errors. Generally, contextual editing only produced significant increases in

accuracy over maximum likelihood methods when distance to known sites was

incorporated for the Landsat image. However, increases in user’s accuracy were seen

for habitats of interest (live coral reef framework) using contextual editing without

information about the distance to known sites. Contextual editing was not found to

significantly improve the overall accuracy of the classification of Quickbird but the

addition of ancillary information in contextual editing 1 did increase the user’s

accuracy of coral class, live and dead coral reef framework and visibly improved the

appearance of the map. The larger impact of contextual editing on Landsat

compared to Quickbird may be partly due to the increased spatial resolution of the

Quickbird image. Mumby et al. (1998) also found that using contextual editing with

compact aerial spectrographic imager (CASI), did not produce the same degree of

improvement in overall accuracy as seen for Landsat. Our results go some way to

supporting the findings of Mumby et al. (1998), who found that contextual editing

improved the classification accuracy of their thematic maps. Despite some of the

results, contextual editing utilizing user knowledge would still be recommended as a

possible method for improving classification accuracies in other areas for habitats of

interest, where known misclassification errors have been identified.

All eCognition methods for Landsat and Quickbird provided a significant

accuracy improvement over the maximum likelihood classifier and contextual

editing. This is similar to the results obtained in terrestrial studies (Mittelberg 2002,

Herold et al. 2003). eCognition methods that incorporated spectral information and

ancillary data via fuzzy rules were the most accurate. Andréfouët et al. (2000) also

found that when ancillary information was included in their fuzzy classification

there was a significant improvement in accuracy compared to the maximum

likelihood classifier. However, interestingly in our study, the accuracy of the results

produced by eCognition 2 and 3 did not significantly differ, with the exception of the

fine habitat map produced from Landsat. Even eCognition 1, which was based on

spectral information alone, was 12 to 15% more accurate than maximum likelihood

for both sensors. This research shows that there is potential to improve classification

accuracies significantly, particularly in areas where there is a lot of spectral

confusion, by changing from a pixel based to object-oriented classification. Where

available, the integration of information on environmental variables that influence

habitat distribution can produce higher map accuracies. The application of object-

oriented methods had a particular impact on the results obtained from the Landsat

image, turning unusable thematic maps from the maximum likelihood classifier, into

a functional, reliable product. As Landsat is the most cost-effective satellite, the

development of methods that allow improved resource mapping of coral reefs is

advantageous.
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6. Conclusions

In conclusion, Landsat ETM + and Quickbird were found to have similar habitat

discrimination capabilities in this region, to previous research in the Caribbean and

Indo-Pacific. However, it has highlighted that the results obtained are sensitive to

the classification method used. On the basis of our results, standard-mapping

methods may not apply to reefs in all biogeographic areas and alternative products

or methods may be necessary to achieve a reasonable degree of accuracy. Our study

also found that Quickbird was able to discriminate between sublittoral marine

habitats at a significantly higher accuracy that Landsat ETM + in this study. This

supports previous work that has suggested that high spatial resolution satellite

sensors can provide more detailed and accurate information than Landsat ETM +
(Andréfouët et al. 2003, Capolsini et al. 2003). The research presented provides

further evidence to suggest that high spatial resolution satellites could be used for

monitoring qualitative changes (Mumby and Edwards 2002, Riegl and Purkis 2005)

but further studies are required to determine the limits of change detection,

especially if object-oriented methods including ancillary information are used.

These results provide the first known published work on the increases in mapping

accuracy possible for coral reef environments using object-oriented classification

and have provided a further study examining the application of contextual editing in

coral reef mapping. This research supports the hypotheses of Malthus and Mumby

(2003) and Hochberg et al. (2003), by demonstrating that the integration of non-

spectral data and user knowledge on habitat constraints can significantly improve

image classifications for coral reef environments. We suggest that the use of

ancillary information and rules should be used as standard practice in coral reef

remote sensing. This study examined contextual editing and object-oriented

classification in a difficult test site, given the environmental conditions and habitats

present. Therefore, users in areas more amenable to optical remote sensing could

expect similar or better results. It is suggested that further work be conducted in

other regions, comparing sensors and classification methods, particularly with

regard to the incorporation of ancillary information and the use of object-oriented

classifiers.
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